рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Роль почки в организме. Понятие об обмене веществ. Продолговатый мозг

Алтайский государственный медицинский университет

Факультет «Сестринское дело»

Заочное отделение

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Нормальная физиология»

Вариант № 41

Выполнил (а)

студент (ка) 285 группы

Гречишникова

Наталья Александровна

Дата выполнения_______

Проверил________

Барнаул - 2009

1. Функции почек. Современная теория мочеобразования

Процесс выделения имеет важнейшее значение для гомеостаза, он обеспечивает освобождение организма от конечных продуктов обмена, которые уже не могут быть использованы, чужеродных и токсичных веществ, а также избытка воды, солей и органических соединений, поступивших с пищей или образовавшихся в результате обмена веществ (метаболизма) [3, с. 278].

В процессе выделения у человека участвуют почки, легкие, кожа, пищеварительный тракт.

В первую очередь почки выполняют функцию органов выделения.

Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови [3, с. 278].

Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. Легкие выводят из организма СO2, воду, некоторые летучие вещества, например пары эфира и хлороформа при наркозе, пары алкоголя при опьянении. Слюнные и желудочные железы выделяют тяжелые металлы, ряд лекарственных препаратов (морфий, хинин, салицилаты) и чужеродных органических соединений.

Экскреторную функцию выполняет печень, удаляя из крови ряд продуктов азотистого обмена. Поджелудочная железа и кишечные железы экскретируют тяжелые металлы, лекарственные вещества.

Почки выполняют ряд гомеостатических функций в организме человека и высших животных.

К функциям почек относятся следующие:

1) участие в регуляции объема крови и внеклеточной жидкости (волюморегуляция);

2) регуляция концентрации осмотически активных веществ в крови и других жидкостях тела (осморегуляция);

3) регуляция ионного состава сыворотки крови и ионного баланса организма (ионная регуляция);

4) участие в регуляции кислотно-основного состояния (стабилизация рН крови),

5) участие в регуляции артериального давления, эритропоэза, свертывания крови, модуляции действия гормонов благодаря образованию и выделению в кровь биологически активных веществ (инкреторная функция);

6) участие в обмене белков, липидов и углеводов (метаболическая функция);

7) выделение из организма конечных продуктов азотистого обмена и чужеродных веществ, избытка органических веществ (глюкоза, аминокислоты), поступивших с пищей или образовавшихся в процессе метаболизма (экскреторная функция) [4, с. 382].

Таким образом, роль почки в организме не ограничивается только выделением конечных продуктов обмена и избытка неорганических и органических веществ. Почка является гомеостатическим органом, участвующим в поддержании постоянства основных физико-химических констант жидкостей внутренней среды, в циркуляторном гомеостазе, стабилизации показателей обмена различных органических веществ.

Для исследования деятельности почек у человека и животных применяют различные методы, с помощью которых определяют объем и состав выделяющейся мочи, оцениваются характер работы клеток почечных канальцев, изменения в составе крови, оттекающей от почки.

Важную роль в изучении функции почки сыграли методы ее исследования у животных в естественных условиях. И. П. Павлов разработал метод наложения фистулы мочевого пузыря. Л. А. Орбели предложил способ раздельного выведения на кожу живота мочеточников каждой почки, что позволило изучать на одном животном регуляцию функции почек, одна из которых была денервирована, а вторая служила контролем [4, с. 382].

Современные представления о функции почки во многом основаны на данных применения методов микропункции и микроперфузии отдельных почечных канальцев.

Впервые извлечение жидкости микропипеткой из почечной капсулы осуществил А. Ричарде в Пенсильванском университете.

В настоящее время с помощью методов микропункции, микроперфузии, микроэлектродной техники исследуют роль каждого из отделов нефрона в мочеобразовании.

Применение микроэлектродов и ультрамикроанализа жидкости, извлеченной микропипеткой, позволяет изучать механизм транспорта веществ через мембраны клеток канальцев.

При исследовании функции почек человека и животных используют метод «очищения» (клиренса): сопоставление концентрации определенных веществ в крови и моче позволяет рассчитать величины основных процессов, лежащих в основе мочеобразования. Этот метод получил широкое применение в клинике.

Для изучения роли почки в синтезе новых соединений сопоставляют состав крови почечной артерии и вены. Исследование метаболизма отдельных участков почечных канальцев, полученных с помощью метода микродиссекции, использование тканевых культур, методов электронной цитохимии, биохимии, иммунохимии, молекулярной биологии и электрофизиологии дает возможность понять механизм работы клеток почечных клубочков и канальцев, их роль в выполнении различных функций почки [3, с. 279].

Образование конечной мочи является результатом трех последовательных процессов.

I. В почечных клубочках происходит начальный этап мочеобразования -- клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

II. Канальцевая реабсорбция -- процесс обратного всасывания профильтровавшихся веществ и воды.

III. Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

Скорость гломерулярной фильтрации, реабсорбции и секреции регулируется в зависимости от состояния организма при участии гормонов, эфферентных нервов или локально образующихся биологически активных веществ -- аутакоидов.

2. Насосная функция сердца, ее регуляция

Сердце располагается в центре грудной клетки, заключено в тонкую фиброзную околосердечную сумку, перикард, и поддерживается крупными кровеносными сосудами [1, с. 227].

Небольшое количество жидкости в полости перикарда смачивает поверхность сердца и способствует его свободным движениям во время сокращения и расслабления [1, с. 227].

Единственной функцией сердца является обеспечение энергией, которая необходима для циркуляции крови в сердечно-сосудистой системе.

Кровоток через все органы тела осуществляется пассивно и происходит только благодаря тому, что при осуществлении насосной деятельности сердца артериальное давление поддерживается на более высоком уровне, чем венозное

Насос правого сердца создает энергетический импульс, необходимый для передвижения крови через сосуды легких, а насос левого сердца обеспечивает необходимую энергию для перемещения крови через органы тела.

Кровь проходит через трикуспидальный клапан в правый желудочек, а отсюда прогоняется через клапан легочной артерии в легочное кровообращение через легочные артерии. Насыщенная кислородом венозная легочная кровь течет по легочным венам в левое предсердие и проникает через митральный клапан в левый желудочек. Отсюда кровь прогоняется через аортальный клапан в аорту для дальнейшего распределения по органам тела [1, с. 228].

Хотя в целом анатомические характеристики насоса правого сердца несколько отличаются от таковых левого сердца, тем не менее, их деятельность как насосов идентична.

Каждый насос состоит из желудочка, который является закрытой камерой, окруженной мышечной стенкой.

Клапаны имеют такое строение, чтобы кровоток мог осуществляться только в одном направлении, они пассивно открываются и закрываются, реагируя на динамику градиента давления вокруг них.

Насосная деятельность желудочка осуществляется за счет циклического изменения полости желудочков в результате ритмичного и синхронного сокращения и расслабления отдельных клеток сердечной мышцы, которые концентрически располагаются в толще стенки желудочка.

Когда мышечные клетки желудочка сокращаются, то в желудочковой ткани возникает концентрическое напряжение, которое создает постепенно нарастающее давление внутри камеры. Как только желудочковое давление превышает давление в легочной артерии (правый насос) или аорте (левый насос), кровь с силой выбрасывается из камеры через выходной клапан.

Эта фаза сердечного цикла, во время которой сокращаются клетки мускулатуры желудочка, называется систолой Так как во время систолы давление в желудочке выше, чем в предсердии, то атриовентрикулярный (АУ) клалан закрыт.

Когда мышечные клетки желудочка расслабляются, давление в желудочке падает ниже, чем в предсердии, AV клапан открывается и желудочек заполняется вновь кровью. Эта часть сердечного цикла называется диастолой.

Клапан на выходе во время диастолы закрыт, так как артериальное давление выше, чем внутрижелудочковое. После периода диастолического заполнения начинается систолическая фаза нового сердечного цикла.

3. Понятие об обмене веществ. Ассимиляция и диссимиляция. Основной обмен, условия, необходимые для его определения. Рабочий обмен. Прямая и косвенная калориметрия.

В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения [3, с. 291].

В организме динамически уравновешены процессы анаболизма (ассимиляции) -- биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) -- расщепление сложных молекул компонентов клеток.

Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела [3, с. 291].

При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию.

Для возмещения энергозатрат организма, сохранения массы тела и удовлетворения потребностей роста необходимо поступление из внешней среды белков, липидов, углеводов, витаминов, минеральных солей и воды. Их количество, свойства и соотношение должны соответствовать состоянию организма и условиям его существования. Это достигается путем питания. Необходимо также, чтобы организм очищался от конечных продуктов распада, которые образуются при расщеплении различных веществ. Это достигается работой органов выделения [3, с. 294].

Интенсивность окислительных процессов и превращение энергии зависят от индивидуальных особенностей организма (пол, возраст, масса тела и рост, условия и характер питания, мышечная работа, состояние эндокринных желез, нервной системы и внутренних органов -- печени, почек, пищеварительного тракта), а также от условий внешней среды (температура, барометрическое давление, влажность воздуха и его состав, воздействие лучистой энергии) [3, с. 294].

Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды.

Энерготраты организма в таких стандартных условиях получили название основного обмена [3, с. 295].

Энерготраты в условиях основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем -- дыхательной мускулатуры, сердца, почек, печени [3, с. 295].

Некоторая часть энерготрат в условиях основного обмена связана с поддержанием мышечного тонуса.

Освобождение в ходе всех этих процессов тепловой энергии обеспечивает ту теплопродукцию, которая необходима для поддержания температуры тела на постоянном уровне, как правило, превышающем температуру внешней среды.

Для определения основного обмена обследуемый должен находиться:

1) в состоянии мышечного покоя (положение лежа с расслабленной мускулатурой), не подвергаясь раздражениям, вызывающим эмоциональное напряжение;

2) натощак, т. е. через 12-- 16 ч после приема пищи;

3) при внешней температуре «комфорта» (18--20 °С), не вызывающей ощущения холода или жары [3, с. 295].

Основной обмен определяют в состоянии бодрствования.

Во время сна уровень окислительных процессов и, следовательно, энергетических затрат организма на 8--10 % ниже, чем в состоянии покоя при бодрствовании [3, с. 295].

Нормальные величины основного обмена человека. Величину основного обмена обычно выражают количеством тепла в килоджоулях (килокалориях) на 1 кг массы тела или на 1 м2 поверхности тела за 1 ч или за одни сутки [3, с. 296].

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.

Интенсивность основного обмена, пересчитанная на 1 кг массы тела, у детей значительно выше, чем у взрослых. Величина основного обмена человека в возрасте 20--40 лет сохраняется на довольно постоянном уровне. В пожилом возрасте основной обмен снижается.

Согласно формуле Дрейера, суточная величина основного обмена в килокалориях (H) составляет:

H=W/K•A0,1333 (1)

где W -- масса тела, г;

А -- возраст человека;

К -- константа, равная для мужчины 0,1015, а для женщины -- 0,1129.

Формулы и таблицы основного обмена представляют средние данные, выведенные из большого числа исследований здоровых людей разного пола, возраста, массы тела и роста.

Определение основного обмена, согласно этим таблицам, у здоровых людей нормального телосложения дают приблизительно верные (ошибка 5--8 %) величины затраты энергии. Несоразмерно высокие данные для определенной массы тела, роста, возраста и поверхности тела величины основного обмена наблюдаются при избыточной функции щитовидной железы.

Понижение основного обмена встречается при недостаточности щитовидной железы (микседема), гипофиза, половых желез.

Если пересчитать интенсивность основного обмена на 1 кг массы тела, то окажется, что у теплокровных животных разных видов, и у людей с разной массой тела и ростом она весьма различна.

Если же произвести перерасчет интенсивности основного обмена на 1 м2 поверхности тела, полученные у разных животных и людей величины различаются не столь резко [3, с. 296].

Согласно правилу поверхности тела, затраты энергии теплокровными животными пропорциональны величине поверхности тела.

Ежедневная продукция тепла на 1 м2 поверхности тела у человека равна 3559 -- 5234 кДж (850--1250 ккал), средняя цифра для мужчин -- 3969 кДж (948 ккал).

Для определения поверхности тела R применяется формула:

R = К * масса тела (2)

Эта формула выведена на основании анализа результатов прямых измерений поверхности тела. Константа К у человека равна 12,3.

Более точная формула предложена Дюбуа:

R= W0,425 • H0,725 • 71,84 (3)

где W -- масса тела в килограммах,

Н -- рост в сантиметрах.

Результат вычисления выражен в квадратных сантиметрах.

Правило поверхности верно не абсолютно. Как показано выше, оно представляет собой лишь правило, имеющее известное практическое значение для ориентировочных расчетов освобождения энергии в организме.

Об относительности правила поверхности свидетельствует тот факт, что у двух индивидуумов с одинаковой поверхностью тела интенсивность обмена веществ может значительно различаться. Уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией, зависящей от биологических особенностей вида животных и состояния организма, которое обусловлено деятельностью нервной, эндокринной и других систем.

Деятельное состояние вызывает заметную интенсификацию обмена веществ. Обмен веществ при этих условиях называется рабочим обменом. Если основной обмен взрослого человека равен 1700-1800 ккал, то рабочий обмен в 2-3 раза выше [5, с. 212].

Таким образом, основной обмен исходным фоновым уровнем потребления энергии. Резкое изменение основного обмена может быть важным диагностическим признаком переутомления, перенапряжения и недовосстановления или заболевания.

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом.

Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру.

В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла [5, с. 212].

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров.

Методы прямой калориметрии очень громоздки и сложны. Учитывая, что в основе теплообразования в организме лежат окислительные процессы, при которых потребляется О2 и образуется СО2, можно использовать косвенное, непрямое, определение теплообразования в организме по его газообмену -- учету количества потребленного О2 и выделенного СО2 с последующим расчетом теплопродукции организма.

Для длительных исследований газообмена используют специальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газообмена в условиях лечебных учреждений и производства проводят более простыми не камерными методами (открытые способы калориметрии).

Наиболее распространен способ Дугласа -- Холдейна, при котором в течение 10--15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого.

Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Кислород, поглощаемый организмом, используется для окисления белков, жиров и углеводов.

Окислительный распад 1 г каждого из этих веществ требует неодинакового количества О2 и сопровождается освобождением различного количества тепла. При потреблении организмом 1 л О2 освобождается разное количество тепла в зависимости от того, на окисление каких веществ О2 используется.

Количество тепла, освобождающегося после потребления организмом 1 л О2, носит название калорического эквивалента кислорода.

Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества -- белки, жиры или углеводы, окислились в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Для примера рассмотрим, каков будет дыхательный коэффициент при использовании организмом глюкозы. Общий итог окисления молекулы глюкозы можно выразить формулой:

С6Н12О6 + 6 О2 = 6 СО2 + 6 Н2О (4)

При окислении глюкозы число молекул образовавшегося СО2 равно числу молекул затраченного (поглощенного) О2.

Равное количество молекул газа при одной и той же температуре и одном и том же давлении занимает один и тот же объем (закон Авогадро-- Жерара). Следовательно, дыхательный коэффициент (отношение СО2/О2) при окислении глюкозы и других углеводов равен единице.

При окислении жиров и белков дыхательный коэффициент будет ниже единицы. При окислении жиров дыхательный коэффициент равен 0,7. Проиллюстрируем это на примере окисления трипальмитина:

2 С3Н5 (С15Н31СОО)3 + 145 О2 = 102 СО2 + 98 Н2О (5)

Отношение между объемами углекислого газа и кислорода составляет в данном случае:

102 CO2/45 O2= 0,703 (6)

Аналогичный расчет можно сделать и для белка; при его окислении в организме дыхательный коэффициент равен 0,8.

При смешанной пище у человека дыхательный коэффициент обычно равен 0,85--089. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода.

Определение энергетического обмена у человека в покое методом закрытой системы с неполным газовым анализом.

Относительное постоянство дыхательного коэффициента (0,85--0,90) у людей при обычном питании в условиях покоя позволяет производить достаточно точное определение энергетического обмена у человека в покое, вычисляя только количество потребленного кислорода и беря его калорический эквивалент при усредненном дыхательном коэффициенте. Количество потребленного организмом кислорода определяют при помощи различных спирографов.

Определив количество поглощенного кислорода и приняв усредненный дыхательный коэффициент равным 0,85, можно рассчитать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал [5, с. 213].

Способ неполного газового анализа благодаря своей простоте получил широкое распространение.

Во время интенсивной мышечной работы дыхательный коэффициент повышается и в большинстве случаев приближается к единице. Это объясняется тем, что главным источником энергии во время напряженной мышечной деятельности является окисление углеводов. После завершения работы дыхательный коэффициент в течение первых нескольких минут так называемого периода восстановления резко снижается до величин меньших, чем исходные, и только спустя 30--50 мин после напряженной работы обычно нормализуется.

Изменения дыхательного коэффициента после окончания работы не отражают истинного отношения между используемым в данный момент кислородом и выделенной СО2.

Дыхательный коэффициент в начале восстановительного периода повышается по следующей причине: в мышцах во время работы накапливается молочная кислота, на окисление которой во время работы не хватало О2 (это так называемый кислородный долг).

Молочная кислота поступает в кровь и вытесняет СО2 из гидрокарбонатов, присоединяя основания. Благодаря этому количество выделенного СО2 больше количества СO2, образовавшегося в данный момент в тканях.

Обратная картина наблюдается в дальнейшем, когда молочная кислота постепенно исчезает из крови.

Одна часть ее окисляется, другая ресинтезируется в гликоген, а третья выделяется с мочой и потом. По мере уменьшения количества молочной кислоты освобождаются основания, которые до того были отняты у гидрокарбонатов.

Эти основания вновь связывают СО2 и образуют гидрокарбонаты, поэтому через некоторое время после работы дыхательный коэффициент резко падает вследствие задержки в крови СО2, поступающей из тканей.

4. Продолговатый мозг. Классификация нервных центров. Функции продолговатого мозга, их характеристика. Особенности функционирования жизненных важных центров. Варолиев мост (мост мозга), его функциональное значение.

Продолговатый мозг (medulla oblongata) у человека имеет длину около 25 мм. Он является продолжением спинного мозга. Структурно по разнообразию и строению ядер продолговатый мозг сложнее, чем спинной. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к периферии [5, с. 172].

В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком -- это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.

Продолговатый мозг за счет своих ядерных образований и ретикулярной формации участвует в реализации вегетативных, соматических, вкусовых, слуховых, вестибулярных рефлексов.

Особенностью продолговатого мозга является то, что его ядра, возбуждаясь последовательно, обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп, что наблюдается, например, при глотании [5, с. 172].

В продолговатом мозге расположены ядра следующих черепных нервов:

- пара VIII черепных нервов -- преддверно-улитковый нерв состоит из улитковой и преддверной частей. Улитковое ядро лежит в продолговатом мозге;

- пара IX -- языкоглоточный нерв (п. glossopharyngeus); его ядро образовано 3 частями -- двигательной, чувствительной и вегетативной. Двигательная часть участвует в иннервации мышц глотки и полости рта, чувствительная -- получает информацию от рецепторов вкуса задней трети языка; вегетативная иннервирует слюнные железы;

- пара X -- блуждающий нерв (n. vagus) имеет 3 ядра: вегетативное иннервирует гортань, пищевод, сердце, желудок, кишечник, пищеварительные железы; чувствительное получает информацию от рецепторов альвеол легких и других внутренних органов и двигательное (так называемое обоюдное) обеспечивает последовательность сокращения мышц глотки, гортани при глотании;

- пара XI -- добавочный нерв (n. accessorius); его ядро частично расположено в продолговатом мозге;

- пара XII -- подъязычный нерв (n. hypoglossus) является двигательным нервом языка, его ядро большей частью расположено в продолговатом мозге.

Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров [5, с. 170].

Нервный центр -- совокупность структур центральной нервной системы, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Представление о структурно-функциональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе [5, с. 170].

На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существования четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных систем мозга.

При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структурах.

Например, дыхательный центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной организации центральных нейронов, огромное число межнейронных со единений в нервных центрах существенно модифицируют (изменяют) направление распространения процесса возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражителя приводит к расширению области вовлекаемых в процесс возбуждения центральных нейронов -- иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

4. Наличие синаптической задержки. Время рефлекторной ре акции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс.

При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка примерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, становится понятной длительность большинства рефлекторных реакций -- десятки миллисекунд.

5. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомлением. Этот процесс связан с деятельностью синапсов -- в последних наступает истощение запасов медиатора, уменьшаются энергетические ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлекторных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга являются мощными коллекторами, собирающими разнородную афферентную информацию. Количественное соотношение периферических рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения).

Конвергенция на клетках нервного центра разных афферентных входов предопределяет важные интегративные, перерабатывающие информацию функции центральных нейронов, т. е. высокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги определяет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

9. Интеграция в нервных центрах. Важные интегративные функции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функциональных объединений отдельных нервных центров в целях осуществления сложных координированных приспособительных целостных реакций организма (сложные адаптивные поведенческие акты).

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется такими свойствами, как повышенная возбудимость, стойкость и инертность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы, когда этот очаг становится наиболее чувствительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги возбуждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активирующего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

11. Цефализация нервной системы. Основная тенденция в эволюционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС.

Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «старых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных реакций.

Продолговатый мозг выполняет ряд следующих функций:

1. Сенсорные функции.

Продолговатый мозг регулирует ряд сенсорных функций: рецепцию кожной чувствительности лица -- в сенсорном ядре тройничного нерва; первичный анализ рецепции вкуса -- в ядре языкоглоточного нерва; рецепцию слуховых раздражений -- в ядре улиткового нерва; рецепцию вестибулярных раздражений -- в верхнем вестибулярном ядре.

В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра).

На уровне продолготоватого мозга перечисленные сенсорные функции реализуют первичный анализ силы и качества раздражения, далее обработанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.

2. Проводниковые функции.

Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-таламический, кортикоспинальный, руброспинальный. В нем берут начало вестибулоспинальный, оливоспинальный и ретикулоспинальный тракты, обеспечивающие тонус и координацию мышечных ре акций.

В продолговатом мозге заканчиваются пути из коры большого мозга -- корковоретикулярные пути. Здесь заканчиваются восходящие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного.

Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.

3. Рефлекторные функции.

Многочисленные рефлексы продолговатого мозга делят на жизненно важные и нежизненно важные, однако такое представление достаточно условно. Дыхательные и сосудодвигательные центры продолговатого мозга можно отнести к жизненно важным центрам, так как в них замыкается ряд сердечных и дыхательных рефлексов.

Продолговатый мозг организует и реализует ряд защитных ре флексов: рвоты, чиханья, кашля, слезоотделения, смыкания век.

Эти рефлексы реализуются благодаря тому, что информация о раздражении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточного нервов попадает в ядра продолговатого мозга, отсюда идет команда к двигательным ядрам тройничного, блуждающего, лицевого, языкоглоточного, добавочного или подъязычного нервов, в результате реализуется тот или иной защитный рефлекс.

Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого поведения: сосания, жевания, глотания.

Кроме того, продолговатый мозг организует рефлексы под держания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам.

Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

Изменение позы осуществляется за счет статических и статокинетических рефлексов.

Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы, соответствующей моменту прямолинейного или вращательного движения.

Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва, которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеварительных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.

Возбуждение ядер блуждающего нерва вызывает усиление со кращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет бронхов.

Деятельность ядер блуждающего нерва проявляется также в усилении секреции бронхиальных, желудочных, кишечных желез, в возбуждении поджелудочной железы, секреторных клеток печени.

В продолговатом мозге локализуется центр слюноотделения, парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая -- белковой секреции слюнных желез.

В структуре ретикулярной формации продолговатого мозга рас положены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться рефлекторно и под действием химических раздражителей.

Дыхательный центр локализуется в медиальной части ретикулярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.

В ретикулярной формации продолговатого мозга представлен другой жизненно важный центр -- сосудодвигательный центр (регуляции сосудистого тонуса).

Он функционирует совместно с выше лежащими структурами мозга и прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм дыхания, тонус бронхов, мышц кишечника, мочевого пузыря, цилиарной мышцы и др. Это обусловлено тем, что ретикулярная формация продолговатого мозга имеет синаптические связи с гипоталамусом и другими центрами.

В средних отделах ретикулярной формации находятся нейроны, образующие ретикулоспинальный путь, оказывающий тормозное влияние на мотонейроны спинного мозга. На дне IV желудочка расположены нейроны «голубого пятна». Их медиатором является норадреналин. Эти нейроны вызывают активацию ретикулоспинального пути в фазу «быстрого» сна, что приводит к торможению спинальных рефлексов и снижению мышечного тонуса.

Повреждение левой или правой половины продолговато мозга выше перекреста восходящих путей проприоцептивной чувствительности вызывает на стороне повреждения нарушения чувствительности и работы мышц лица и головы.

В то же время на противоположной стороне относительно стороны повреждения наблюдаются нарушения кожной чувствительности и двигательные параличи туловища и конечностей. Это объясняется тем, что восходящие и нисходящие проводящие пути из спинного мозга и в спинной мозг перекрещиваются, а ядра черепных нервов иннервируют свою половину головы, т. е. черепные нервы не перекрещиваются.

Мост (pons cerebri, pons Varolii) располагается выше продолговатого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.

В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибулярного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Ретикулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.

Важной структурой моста является средняя ножка мозжечка.

Именно она обеспечивает функциональные компенсаторные и морфологические связи коры большого мозга с полушариями мозжечка.

Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улиткового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва -- в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ вестибулярных раздражений их силы и направленности.

Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко к наружи.

Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую барабанную перепонку, и мышцу, натягивающую небную занавеску.

Проводящая функция моста обеспечивается продольно и поперечно расположенными волокнами. Поперечно расположенные волокна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между поперечными волокнами расположены нейронные скопления -- ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.

В покрышке моста располагаются продольно идущие пучки волокон медиальной петли (lemniscus medialis).

Они пересекаются поперечно идущими волокнами трапециевидного тела (corpus trapezoideum), представляющие собой аксоны улитковой части преддверно-улиткового нерва противоположной стороны, которые заканчиваются в ядре верхней оливы (oliva superior).

От этого ядра идут пути боковой петли (lemniscus lateralis), которые направляются в заднее четверохолмие среднего мозга и в медиальные коленчатые тела промежуточного мозга.

В покрышке мозга локализуются переднее и заднее ядра трапециевидного тела и латеральной петли. Эти ядра вместе с верхней оливой обеспечивают первичный анализ информации от органа слуха и затем передают информацию в задние бугры четверохолмий.

В покрышке также расположены длинный медиальный и тектоспинальный пути.

Собственные нейроны структуры моста образуют его ретикулярную формацию, ядра лицевого, отводящего нервов, двигательной порции ядра и среднее сенсорное ядро тройничного нерва.

Ретикулярная формация моста является продолжением ретикулярной формации продолговатого мозга и началом этой же системы среднего мозга. Аксоны нейронов ретикулярной формации моста идут в мозжечок, в спинной мозг (ретикулоспинальный путь). Последние активируют нейроны спинного мозга.

Ретикулярная формация моста влияет на кору большого мозга, вызывая ее пробуждение или сонное состояние. В ретикулярной формации моста находятся две группы ядер, которые относятся к общему дыхательному центру.

Один центр активирует центр вдоха продолговатого мозга, другой -- центр выдоха. Нейроны дыхательного центра, расположенные в мосте, адаптируют работу дыхательных клеток продолговатого мозга в соответствии с меняющимся состоянием организма.

Тесты

1. Как называются соединения гемоглобина с кислородом?

- метгемоглабин;

- карбоксигемоглабин;

- оксигемогбин;

- карбогемоглобин.

2. Виды моторики, характерные для тонкого кишечника:

- маятникообразные сокращения;

- перистальтика

- антиперестальтика

- ритмическая сегментация.

3. Какому темпераменту по классификации Гиппократа соответствует сильный, уравновешенный, подвижный тип ВНД:

- сангвинику;

- холерику

- флегматику;

- меланхолику.

Список используемой литературы

1. Агаджанян Н.А., Основы физиологии человека / Н.А. Агаджанян. - М.: Медицина, 2001.- 408с.

2. Основы физиологии человека: учебник для высших учебных заведений: в 2 т. Под ред. Б.И. Ткаченко. - СПб: Международный фонд истории науки, 1994. - т.1 - 567с., т.2 - 412 с.

3. Физиология человека / под ред. В.М. Покровского, Г.Ф. Коротько.- Т.1.- М.: «Медицина», 1997. - 448с.

4. Физиология человека: Учебник (курс лекций)/ Под редакцией Н.А. Агаджаняна и В.И. Циркина. - СПб.: Сотис, 1998. - 527 с.

5. Физиология человека / под. ред. Г.И. Косицкого. - Ф50 3-е изд., перераб. и доп., - М.: Медицина, 1985. - 544с., ил.

6. Чумаков Б.Н., Физиология человека для инженеров: Учебное пособие.- М.: педагогическое общество России, 2006. - 336с.

рефераты
РЕФЕРАТЫ © 2010