рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Кровоснабжение сердца. Желудочный сок. Транспорт газов кровью

Содержание

1. Кислотно-щелочное состояние крови. Значение данной константы, ее регуляция

2. Вторая и третья фазы свертывания крови. Понятие о противосвертывающей системе и фибринолизе

3. Проводящая система сердца. Особенности проведения возбуждения по сердечной мышце

4. Особенности кровоснабжения сердца. Регуляция тонуса коронарных сосудов

5. Состав и ферментативное действие желудочного сока, механизмы регуляции его секреции

6. Транспорт газов кровью. Механизм газообмена между легкими и кровью, кровью и тканями. Основные факторы, влияющие на скорость диффузии газов

Список литературы

1. Кислотно-щелочное состояние крови. Значение данной константы, ее регуляция

Кровь имеет слабощелочную реакцию. Активная ее реакция определяется количественным соотношением Н+ и ОН- ионов. Показатель активной реакции (рН) артериальной крови равен 7,4; рН венозной кропи-7,35, что объясняется большим содержанием в ней углекислоты. Физиологические процессы оптимально протекают при определенной активной реакции крови. От величины этой реакции зависят процессы окисления и восстановления в клетках, процессы расщепления и синтеза белков, гликолиза, окисления углеводов и жиров, способность гемоглобина отдавать тканям кислород. Поэтому значительные сдвиги от нормальной концентрации рН (7,35-7,40) могут приводить к нарушению многих физиологических процессов, а при чрезвычайных сдвигах за известные пределы - и к гибели организма.

В процессе обмена в организме постоянно освобождаются вещества кислой реакции. Поэтому всегда имеется тенденция к сдвигу реакции крови в кислую сторону. Несмотря на это, для крови человека характерна высокая устойчивость реакции. Регуляция концентрации Н+ и ОН- крови является одной из весьма совершенных в организме. Тонкая регуляция рН крови обеспечивается буферными свойствами и деятельностью органов выделения.

Буферные свойства крови заключаются в способности препятствовать сдвигу активной реакции крови. Эта способность обусловливается буферными системами, которые состоят из смеси слабых кислот с солями этих кислот и сильных оснований. К ним относится: 1) угольная кислота - двууглекислый натрий (карбонатная буферная система); 2) одноосновный - двуосновный фосфорнокислый натрий (фосфатная буферная система); 3) белки плазмы (буферная система белков плазмы); 4) гемоглобин - калийная соль гемоглобина (буферная система гемоглобина). Буферные свойства крови на 75% зависят от содержания в ней гемоглобина и его солей.

Буферные системы особенно препятствуют сдвигу реакции крови в кислую сторону. Это объясняется способностью сильных кислот (например, молочной кислоты), поступающих в кровь, вытеснять слабые кислоты из их соединения с основаниями. При этом образуются соли сильных кислот, ч-то сдерживает сдвиг реакции крови в кислую сторону. Все буферные системы крови создают в крови щелочной резерв, который в организме относительно постоянен.

Кислотно-щелочное равновесие крови выражает малосдвигаемое в нормальных условиях соотношение кислотных и щелочных эквивалентов. Нервно-гуморальные механизмы, регулирующие деятельность почек, потовых желез, дыхательной и пищеварительной систем, обеспечивают удаление из организма продуктов обмена и этим сохраняют постоянство рН и кислотно-щелочного равновесия.[2, 218c]

2. Вторая и третья фазы свертывания крови. Понятие о противосвертывающей системе и фибринолизе

Свертывающая система крови - это совокупность факторов, участвующих в процессах свертывания крови. Изучение процесса свертывания крови имеет практическое значение при переливании крови для сохранения ее в жидком состоянии, для предупреждения смертельных кровотечений, предотвращения образования тромбов в сосудах и лечения внутрисосудистых тромбозов.

Три стадий свертывания крови: сосудистая, тромбоцитарная, стадия коагуляции и ретракция сгустка.

Рассмотрим подробнее вторую и третью стадии свертывания крови.

Тромбоцитарная стадия начинается с присоединения пластинок к волокнам коллагена в поврежденных стенках сосуда. Химические вещества, находившиеся в плазме и высвобожденные при разрушении самих пластинок, стимулируют дальнейшее сужение сосудов, агрегацию тромбоцитов и затем митоз, необходимый, как и можно было догадаться, для восстановления стенок.

Третью стадию называют стадией коагуляции. Ее называют третьей стадией, потому что она длится дольше, чем стадия пластинок, но в действительности они обе начинаются в пределах 30 секунд после повреждения стенок сосудов. Эта стадия вызывает каскадную реакцию, вовлекающую многочисленные факторы свертывания крови, подобно падению домино. Самая важная вещь на этом этапе - химическое преобразование (благодаря тем же факторам свертывания) растворенного в плазме фибриногена в волокна фибрина. Эти волокна «заманивают» в ловушку эритроциты и лейкоциты и таким образом останавливают поток крови.

На последней стадии, при ретракции сгустка, нарушенные части сосуда стягиваются вместе, что предотвращает любое дальнейшее кровотечение. Ретракция делает меньше поврежденную область и облегчает последующий митоз и заключительное восстановление. Единственная оставшаяся вещь - фибринолиз, который представляет собой распад и ломку сгустка после того, как восстановление тканей закончено.

Противосвертывающая (антисвертывающая) система крови - это совокупность содержащихся в крови веществ, препятствующих образованию кровяного сгустка и его ретракции. В ней выделяют две системы. Первая антисвертывающая система нейтрализует умеренно избыточное количество протромбина в крови за счет находящихся в ней антикоагулянтов.

Она представлена запасом естественных антикоагулянтов (гепарин, плазменный антитромбин, антитромбопластин, фибринолизин), которые нейтрализуют свертывающие факторы, и системой макрофагов (ретикулоэндотелиальная система), включающей все клетки организма, способные поглощать из крови различные коллоидные частицы, в том числе факторы свертывания крови. Вторая антисвертывающая система активируется при раздражении хеморецепторов сосудов значительным повышением уровня тромбина в крови. В результате активации этой системы увеличивается поступление в кровь гепарина и активаторов фибринолиза из тканей, где они образуются.[3, 177c]

3. Проводящая система сердца. Особенности проведения возбуждения по сердечной мышце

Возбуждение в миокарде распространяется сразу ко всем кардиомиоцитам благодаря проводящей системе сердца, образованной атипичными мышечными клетками. Проводящая система сердца состоит из двух узлов (синусно-предсердного и предсердно-желудочкового) и предсердно-желудочкового пучка. Синусно-предсердный узел расположен в стенке правого предсердия между устьями полых вен. Этот узел называют «водителем сердечного ритма», поскольку возбуждение вначале возникает в этом узле. Из синусно-предсердного узла возбуждение распространяется в миокард предсердий и в предсердно-желудочковый узел, лежащий также в стенке правого предсердия, у его границ с желудочками. От предсердно-желудочкового узла по клеткам предсердно-желудочкового пучка и его разветвления возбуждение распространяется к кардиомиоцитам желудочков.

Возбудимость сердечной мышцы непостоянна. Она изменяется по ходу возбуждения. В начальном его периоде сердечная мышца невосприимчива (рефрактерна) к повторным раздражениям. Этот период называется фазой абсолютной рефрактерности. У человека она длится 0,2-0,3 сек., т. е. совпадает с временем сокращения сердца. По окончании фазы абсолютной рефрактерности возбудимость сердечной мышцы постепенно восстанавливается и на очень короткое время становится выше исходной.

При действии частых раздражителей сердечная мышца не отвечает на те из них, которые поступают в фазе абсолютной рефрактерности. Если же дополнительный внеочередной импульс действует на сердце в тот момент, когда его возбудимость уже восстановилась, то возникает дополнительное сокращение сердца, называемое экстрасистолой. Следующий очередной импульс при этом попадает к сердцу в фазе его рефрактерности. Сердце на него не реагирует, и поэтому после экстрасистолы наблюдается удлиненная (компенсаторная) пауза.[5, 287]

4. Особенности кровоснабжения сердца. Регуляция тонуса коронарных сосудов

Любой орган, в том числе и сердце, для нормальной деятельности нуждается в беспрерывном притоке питательных веществ и кислорода и выведении продуктов распада.

Сердечная мышца, производящая огромную работу, обильно снабжается кровью. Примерно 10% крови, выбрасываемой левым желудочком, идет по сосудам сердца. Хотя вес сердца составляет только 0,5% от веса всего организма, сердце потребляет 10% артериальной крови. Кровоснабжение сердца осуществляется специальными артериями, получившими название коронарных, или венечных артерий.

Венечные артерии начинаются от аорты на уровне полулунных клапанов. В толще сердечной мышцы они на густую капиллярную сеть. Капиллярная сеть собирается в венулы, а в дальнейшем в вены, которые впадают в венозный синус сердца, открывающийся в правое предсердие.

Кровообращение сердца имеет ту особенность, что ток крови является неравномерным.

В период диастолы желудочков, когда захлопываются полулунные клапаны, кровь из аорты устремляется в венечные артерии. В это время давление в артерии высокое, а мышца сердца расслаблена, следовательно, создаются необходимые условия для поступления крови.

Количество крови, поступающей в венечные артерии, зависит от величины давления в аорте: чем выше это давление, тем больше крови поступает в венечные артерии.

Значительно меньше крови поступает в сердечную мышцу в период систолы желудочков. При сильном сокращении сердечной мышцы вследствие сжатия сосудов кровообращение в ней может на короткое время прекратиться.

Нарушение нормального кровообращения сердца вызывает резкие изменения сердечной деятельности.

Кровообращение в сердечной мышце человека нарушается при склерозе коронарных сосудов, при закупорке (тромбозе) и рефлекторных спазмах. На коронарные сосуды действуют как нервные влияния, так и гуморальные агенты.

Из гуморально действующих веществ важно отметить действие гормона надпочечников - адреналина. Адреналин вызывает сужение всех сосудов тела, кроме коронарных, и сосудов мозга, которые, наоборот расширяются. Это обстоятельство имеет исключительно важное физиологическое значение, так как при физической работе и эмоциональном возбуждении количество адреналина в крови резко увеличивается. Вызывая расширение коронарных сосудов, адреналин тем самым способствует улучшению сердечной деятельности.

Нервная регуляция сосудистого тонуса. В регуляции просвета сосудов принимают участие как чувствительные (афферентные), так и двигательные (эфферентные) нервы. Афферентные нервные волокна, несущие возбуждения в ЦНС от сосудов, делятся на прессорные и депрессорные в зависимости от того, вызывает ли их возбуждение рефлекторное сужение или расширение сосудов. Возбуждение прессорных нервов приводит к рефлекторному сужению кровеносных сосудов и повышению АД. В результате возбуждения депрессорных нервов (аортального, синокаротидного) наблюдается рефлекторное расширение сосудов и понижение АД.

Двигательные нервные волокна, несущие возбуждение к сосудам, делятся на сосудосуживающие и сосудорасширяющие. Нейрогенное сужение сосудов обеспечивается сосудосуживающими нервами, относящимися к симпатической нервной системе. Последняя оказывает сосудосуживающее влияние на прекапиллярные сосуды сопротивления, венулы и вены, т. е. вызывает сужение резистивных и емкостных сосудов. Венозная система реагирует на адреносимпатические стимулы раньше артерий и при меньшей силе раздражения. Это увеличивает венозный возврат к сердцу. НА, взаимодействуя с а-адренорецепторами постсинаптической мембраны гладких мышц сосудов внутренних органов, кожи, слизистых оболочек, вызывает их сужение. Взаимодействие НА с в-адренорецепторами гладких мышц сосудов способствует расширению их.

Нейрогенное расширение сосудов осуществляется двумя путями. 1. Первый - недифференцированный путь, когда происходит пассивная вазодилатация сосудов в результате рефлекторного уменьшения вазоконстрикторного влияния симпатической нервной системы. Пассивная вазодилатация особенно выражена в сосудах, имеющих высокий исходный нейрогенный тонус (например, в сосудах неработающих мышц).

2. Второй путь - дифференцированный, когда происходит активное расширение сосудов в результате возбуждения сосудорасширяющих волокон и выделения в их окончаниях особых медиаторов, расслабляющих гладкие кольцевые мышцы сосудов. Активное расширение сосудов происходит при возбуждении некоторых парасимпатических нервов (тазового, язычного, ветви лицевого нерва - барабанной струны). Симпатические холинергические волокна, в окончаниях которых выделяется АХ, вызывают расширение кровеносных сосудов, снабжающих скелетные мышцы. Активное расширение сосудов кожи и слизистых оболочек возможно при раздражении этих участков или чувствительных нервов, идущих от них. Физиологическое значение такого местного расширения (например, при воздействии горчичников, укусе насекомых, травме, инфекции) заключается в том, что оно обеспечивает улучшение кровоснабжения поврежденного или больного участка. Главная роль в таком местном расширении сосудов принадлежит гуморальным факторам.

Тонус сосудов регулируется в первую очередь за счет нейронов сосудодвигательного центра, расположенного в продолговатом мозге. Сосудодвигательный центр продолговатого мозга постоянно находится в тоническом состоянии. Тонус сосудодвигательного центра продолговатого мозга поддерживается: а) рефлекторно за счет восходящих нервных импульсов, приходящих от различных рецепторов, расположенных как в сосудах внутренних органов, так и на поверхности тела; б) за счет нисходящих влияний сосудодвигательных центров, расположенных в лежащих выше структурах (гипоталамус, кора головного мозга); в) за счет гуморальных веществ, оказывающих непосредственное влияние на его нейроны.

Гладкие мышцы сосудов обладают автоматизмом. После полного выключения нервных и гуморальных влияний тонус сосудов, хотя и в меньшей мере, поддерживается. Тонус гладких мышц сосудов был назван базальным тонусом. Он наиболее выражен в прекапиллярных сосудах сопротивления, особенно в прекапиллярных сфинктерах, т. е. в резистивных сосудах.

Гуморальная регуляция сосудистого тонуса. Гуморальная регуляция просвета сосудов дополняет и продлевает влияние нервной регуляции. Она осуществляется за счет вазоактивных веществ, находящихся в крови. Вазоактивные вещества делятся на сосудосуживающие и сосудорасширяющие.

Сосудосуживающие вещества. 1. Катехоламины. Адреналин и НА взаимодействуют с а- и в-адренорецепторами. Взаимодействуя с а-адренорецепторами гладких мышц сосудов, они вызывают сокращение их, а взаимодействуя с в-адренорецепторами - расширение сосудов. Однократное введение адреналина в кровь вызывает кратковременный подъем АД, после которого наблюдается снижение уровня его. Это объясняется тем, что сосудорасширяющее влияние адреналина продолжительнее, чем сосудосуживающее. НА разрушается в легких, а адреналин нет.

2. Ренин-ангиотензин. Ренин - это протеолитический фермент, образуется постоянно в небольших количествах в юкстагломерулярном комплексе почек. Сам ренин сосудосуживающего действия не оказывает, но под влиянием его из антиотензиногена, относящегося к а2-глобули-нам, образуется ангиотензин I. В плазме крови ангиотензин превращается в ангиотензин II под влиянием конвертирующего (превращающего) фермента, отщепляющего от него две молекулы аминокислоты. Ангиотензин II - самый активный из всех известных биологических сосудосуживающих веществ. Он вызывает сокращение гладких мышц артериол, в которых имеются а-адренорецепторы. Ренин, кроме того, усиливает секрецию альдостерона, который также оказывает сосудосуживающее действие. Оно обусловлено тем, что альдостерон задерживает Nа+ в организме, который повышает чувствительность сосудистой стенки к сосудосуживающему влиянию адреналина, а также активирует секрецию адреналина надпочечниками.

3. АДГ. Сосудосуживающее действие его незначительно, однако в стрессовых ситуациях (например, при падении диастолического давления до 25 мм рт. ст. в результате кровотечения) его активность резко увеличивается. Адреналин и АДГ - синергисты; АДГ повышает чувствительность сс-адренорецепторов, а адреналин в свою очередь повышает чувствительность гладких мышц сосудов к АДГ. Сосудосуживающее действие АДГ более длительное, чем адреналина. АДГ вызывает сужение артериол и капилляров всех органов, в больших дозах - сужение сосудов мозга.

4. Серотонин образуется в слизистой оболочке кишечника, в некоторых структурах мозга, клетках ретику-лоэндотелия. При протекании крови через эти органы серотонин активно абсорбируется тромбоцитами и с током крови разносится по всему организму. В тромбоцитах серотонин находится в неактивной форме и активизируется при разрушении тромбоцитов (например, при ранении сосудов). Физиологическое значение его в этом случае состоит в том, что он местно суживает сосуды и тем самым способствует прекращению кровотечения из поврежденного сосуда. Серотонин суживает сосуды брюшной полости, мозга. Он повышает чувствительность микрососудов к адреналину и НА. Инактивируется, как и НА, в легких.

5. Тонины синтезируются в слюнных железах. Они обладают более сильным сосудосуживающим свойством, чем ренин-ангиотензин; переводят ангиотензиноген сразу в ангиотензин II, минуя стадию ангиотензина I.

6. Простагландин Р оказывает местное сосудосуживающее действие, так как разрушается в легких и печени.

Сосудорасширяющие вещества. 1. Кинины (брадики-нин, лизилбрадикинин, метиониллизилбрадикинин) - группа биологически активных полипептидов, образуются в тканях и плазме крови при различных повреждающих воздействиях. Находятся в плазме в основном в неактивном состоянии в виде кининогенов (аг-глобулины). Превращаются в кинины под влиянием кининогенинов, образующихся в поджелудочной железе, легких, слюнных железах, почках. Кинины являются наиболее сильными сосудорасширяющими веществами, они расширяют артериолы, прекапиллярные сфинктеры и даже вены; вызывают открытие артериовенозных анастомозов, в результате чего увеличивается венозный отток. Кинины способствуют увеличению объемного кровотока в сердечной мышце, органах брюшной полости, мозге, секреторных железах. Возможно, они осуществляют перераспределение кровотока для улучшения кровоснабжения работающих органов и участвуют в регуляции локального периферического кровотока. Брадикинин разрушается в легких.

2. Гистамин образуется в стенках желудочно-кишечного тракта, в коже, скелетных мышцах, легких, мозговой ткани (особенно в гипоталамусе, гипофизе, мозжечке) в процессе метаболизма из аминокислоты гистидина. Избыточное образование гистамина может вследствие значительного расширения капилляров и одновременно наступающего при этом увеличения проницаемости их стенки привести к нарушению микроциркуляции в различных органах, в том числе в ЦНС, и возникновению гистаминового шока. Гистамин находится в клетках в связанном состоянии. Высвобождение его происходит при воздействии физических или химических факторов, аллергических состояниях. Появление гиперемии, отечности и образование волдырей при воздействии ультрафиолетовых лучей на кожу обусловлено выделением гистамина. В легких гистамин разрушается.

3. АХ вызывает расширение мелких артерий. Оказывает лишь «местное» действие, так как быстро инактиви-руется холинэстеразой.

4. Простагландины найдены во многих тканях: семенной жидкости мужчин, в легких, мозговом веществе почек, в органах брюшной полости и т. д. Простагландины оказывают непосредственное влияние на мембрану клеток: повышают ее проницаемость для гормонов, Са2+, поэтому эффект их действия не блокируется холино-и адреноблокаторами, а также ганглиоблокаторами. Известно около 12 простагландинов. Простагландины А и Е снижают тонус артерий, вызывают их расширение.

5. Медуллин образуется в мозговом веществе почек. Есть предположение, что он является одним из простагландинов (простагландин А).

6. Продукты метаболизма (АТФ, АДФ, аденозин и его производные, молочная кислота, СОа), а также Н+ и К+ вызывают значительное расширение метартериол и расслабление прекапиллярных сфинктеров, в результате чего происходит местное увеличение кровотока в соответствии с потребностями тканевого обмена.

Сужение и расширение сосудов в организме имеют различное функциональное назначение. Сужение сосудов обеспечивает перераспределение крови в интересах целого организма, в интересах жизненно важных органов, когда, например, в экстремальных условиях отмечается несоответствие между объемом циркулирующей крови и емкостью сосудистого русла. Расширение сосудов обеспечивает приспособление кровоснабжения к деятельности того или иного органа или ткани. [4, 60c]

5. Состав и ферментативное действие желудочного сока, механизмы регуляции его секреции

Пища подвергается в желудке физической и химической обработке. Перемешивание, перетирание и разминание пищи происходит благодаря деятельности гладких мышц желудочной стенки.

Химическая обработка пищи осуществляется желудочным соком, выделяемым железами его слизистой оболочки. Железы желудка состоят из главных, добавочных и обкладочных клеток. Главные клетки образуют ферменты, добавочные - слизь, обкладочные - соляную кислоту.

Желудочный сок содержит ферменты протеазы и липазу. К протеазам относятся пепсины, желатиназа и химозин. Пепсины выделяются железами желудка в виде неактивных пенсиногенов. Активирует их соляная кислота. При недостатке соляной кислоты переваривание пищи (особенно белковой) нарушается. Пепсины расщепляют белки до промежуточной стадии (полипептиды). Окончательное расщепление белков (до аминокислот) происходит в кишечнике. Желатиназа способствует перевариванию белков соединительной ткани. Химозин створаживает молоко, что имеет значение для его переваривания. Липаза расщепляет жиры на глицерин и жирные кислоты. В желудке она действует только на эмульгированные жиры (молоко).

Желудочный сок имеет кислую реакцию (рН равен 1,5-2,5),что обусловлено наличием в нем соляной кислоты (0,4-0,5%). Для нейтрализации 100 мл желудочного сока здорового человека требуется 40-60 мл децинормального раствора щелочи. Этот показатель называется кислотностью желудочного сока.

Соляная кислота желудочного сока играет важную роль в пищеварении. Она активирует пепсиногены, вызывает денатурацию и набухание белков (что облегчает их переваривание), способствует створаживанию молока, активирует гормон гастрин, образующийся в слизистой оболочке привратника и стимулирующий желудочную секрецию. Поступая в двенадцатиперстную кишку, соляная кислота действует на ее слизистую оболочку, в которой образуются гормоны, регулирующие деятельность желудка, поджелудочной железы и печени. Кроме того, соляная кислота задерживает развитие гнилостных процессов в желудке и усиливает его двигательную деятельность. Соляная кислота участвует также в сложном процессе перемещения пищевых масс из желудка в кишечник.

Слизь желудочного сока предохраняет внутреннюю оболочку желудка от вредных механических и химических воздействий. Кроме того, она содержит вещества, усиливающие секрецию желудочных желез, и, адсорбируя витамины, предохраняет их от разрушающего действия желудочного сока.

Возбудителями желудочной секреции являются:

А) нервное возбуждение, которое, возникая в результате безусловного или условного рефлекса, поступает из центральной нервной системы к желудочным железам;

Б) механическое раздражение, которое испытывают рецепторы, находящиеся в стенках желудка, при попадании в него пищи;

В) химические влияния, которые связаны с тем, что при всасывании пищи в кровь попадают вещества, оказывающие на нервно-железистый аппарат желудка возбуждающее влияние.[2, 284c]

6. Транспорт газов кровью. Механизм газообмена между легкими и кровью, кровью и тканями. Основные факторы, влияющие на скорость диффузии газов

Благодаря особому свойству гемоглобина вступать в соединение с кислородом и углекислым газом, кровь способна поглощать эти газы в значительном количестве. В 100 мл артериальной крови содержится до 20 мл кислорода и до 52 мл углекислого газа. Одна молекула гемоглобина способна присоединить к себе четыре молекулы кислорода, образуя неустойчивое соединение оксигемоглобин. Известно, что 1 мл гемоглобина связывает 1,34 мл кислорода. В 100 мл крови содержится 15 г гемоглобина.

В тканях организма в результате непрерывного обмена веществ, интенсивных окислительных процессов расходуется кислород и образуется углекислый газ. При поступлении крови в ткани организма гемоглобин отдает клеткам, тканям кислород. Образовавшийся при этом обмене веществ углекислый газ переходит (диффундирует) из тканей в кровь и присоединяется к гемоглобину. При этом образуется непрочное соединение - карбгемоглобин. Быстрому соединению гемоглобина с углекислым газом способствует находящийся в эритроцитах фермент карбоангидраза.

Гемоглобин эритроцитов способен соединяться и с другими газами. Так, например, с окисью углерода, образующейся при неполном сгорании угля или другого топлива, гемоглобин соединяется в 150 - 300 раз быстрее, чем с кислородом. При этом образуется довольно прочное соединение карбоксигемоглобин. Полому даже при малом содержании в воздухе окиси углерода (СО2) гемоглобин соединяется не с кислородом, а с окисью углерода. При этом снабжение организма кислородом, его транспорт к клеткам, тканям нарушается, прекращается. Человек в этих условиях задыхается и может погибнуть из-за непоступления кислорода в ткани организма.

Недостаточное поступление кислорода в ткани (гипоксия) может возникнуть при недостатке кислорода во вдыхаемом воздухе, например в горах.

При остановке, прекращении дыхания развивается удушье (асфиксия). Такое состояние может случиться при утоплении или других неожиданных обстоятельствах, при попадании инородного тела в дыхательные пути (разговор во время еды), при отеке голосовых связок в связи с заболеванием. Частицы пищи могут быть удалены из дыхательных путей рефлекторным кашлем (кашлевым толчком), возникающим в результате раздражения слизистой оболочки дыхательных путей, в первую очередь гортани.

При остановке дыхания (утопление, удар электрического тока, отравление газами), когда сердце еще продолжает работать, делают искусственное дыхание с помощью специальных аппаратов, а при их отсутствии - по методу «рот в рот», «рот в нос» или путем давления и расширения грудной клетки.

Переход кислорода из крови в ткани. В клетках тканей рО2 постоянно стремится к снижению, а в функционирующих мышцах может снизиться до нуля. Поэтому из притекающей к тканям артериальной крови, где исходная величина рО2 большая (около 100 мм рт. ст.), кислород диффундирует в ткани, и рО2 крови снижается все больше и больше по мере протекания ее через ткани и становится равным 40 мм рт. ст. и меньше.

Кровь капилляров большого круга кровообращения отдает не весь кислород. Если в артериях имеется в среднем 19 об% О2, то в оттекающей от тканей венозной крови - около 11 об% О2. Следовательно, ткани утилизировали 8 об% кислорода. Разность между об% О2 в притекающей к тканям артериальной крови и оттекающей от них венозной называется артерио-венозной разностью. Эта величина служит важной характеристикой дыхательной функции крови, показывая, какое количество кислорода доставляют тканям каждые 100 мл крови. Для того чтобы выяснить, какая часть приносимого кровью кислорода переходит в ткани, вычисляют коэффициент утилизации кислорода. Его определяют путем деления величины артерио-венозной разности (по кислороду) на содержание кислорода в венозной крови и умножения на 100. В покое коэффициент утилизации О2 обычно равен 30-40%. При напряженной мышечной работе, когда в оттекающей от мышц венозной крови содержание О2 уменьшается примерно до 8 об % и более (вместо 11 об% в покое), утилизация кислорода участвующими в работе тканями может возрасти до 50-60 об % и более.

В снабжении мышц кислородом в трудных условиях работы может иметь значение и внутримышечный пигмент миоглобин, который связывает дополнительно 1,0-1,5 л О2.

Связь кислорода с миоглобином более прочная, чем с гемоглобином. Оксимиоглобин отдает кислород только при выраженной гипоксемии. При этом существенное значение имеют ферментативные внутриклеточные процессы.

Переход углекислого газа из тканей в кровь. Поскольку рС02 в тканях достигает значительных величин (50-60 мм рт. ст. и выше), углекислый газ переходит в межтканевую жидкость, где рСО2 равно в среднем 46 мм рт. ст., и в кровь, превращая ее в венозную (рСО2 - около 40 мм рт. ст.). Повышение напряжения углекислоты в крови, а также увеличение сдвига рН в кислую сторону, например при мышечной работе, способствует отдаче кислорода кровью для окислительных процессов в тканях.

Между парциальным давлением кислорода альвеолярного воздуха и напряжением его в венозной крови существует разность: если парциальное

Давление кислорода в альвеолярном воздухе равно примерно 102 мм рт. ст., то в крови, протекающей в капиллярах, оплетающих альвеолярную стенку, оно составляет только 40 мм рт. ст. Причиной перехода СО2 из крови в альвеолярный воздух является то, что напряжение газа в венозной крови капилляров (примерно 47 мм рт. ст.) выше парциального давления в алвеолярном воздухе (40 мм рт. ст.).

Обмен газов через кислорода (рО2) в альвеолярном воздухе стенки альвеолы примерно на 62 мм рт. ст. выше, чем в крови, притекающей к легким, что определяет диффузию О2 в кровь. В оттекающей от легких крови рО2 приближается к 100 мм рт. ст. В связи с тем, что парциальное напряжение углекислого газа (рСО2) в притекающей к легким крови примерно на 7 мм рт. ст. выше, чем в альвеолярном воздухе, углекислый газ переходит в альвеолярный воздух.

В последние годы придается существенное значение факторам, замедляющим диффузионные процессы, особенно диффузию кислорода. Диффузия зависит как от свойств альвеолярной мембраны, так и от условий кровоснабжения легочной ткани. Изменения диффузии наблюдается в условиях сильных воздействий на организм, при мышечной нагрузке, изменениях положений тела и др.

Альвеолярная и капиллярная мембраны являются сложным неоднородным образованием. Внутренняя стенка альвеол выстлана жидкой пленкой, предохраняющей их ткань от высыхания и содержащей важные вещества (сурфактанты), определяющие необходимую способность легочной ткани к растяжению. Растворимость углекислоты в тканях легочной мембраны выше растворимости в ней кислорода более чем в 20 раз. Поэтому выведение СО2 из крови осуществляется, как правило, без существенных трудностей.

Определенное значение для диффузии кислорода может иметь общее сопротивление газообмену, зависящее от величины «мембранного сопротивления» и «внутрикапиллярного сопротивления». Обычно в легких имеется такое соотношение скорости кровотока с емкостью капилляров, которое обеспечивает оптимальные условия для газообмена. Однако в некоторых сложных условиях деятельности кровоток в капиллярах может значительно ускоряться. Вследствие этого время контакта альвеолярного воздуха с кровью, необходимое для диффузии кислорода в кровь через альвеолярную мембрану, оказывается недостаточным. В этом случае кровь вытекает из легочных капилляров с уменьшенным парциальным напряжением кислорода. Неравномерность кровоснабжения и вентиляции альвеол может вызывать нарушение диффузионных возможностей в легких и снижение насыщения крови кислородом.[5, 206c]

Список литературы

1. Воронин Л.Г. «Физиология высшей нервной деятельности и психология» - Москва: Просвещение, 2008-223 с.

2. Зимкин Н.В. «Физиология человека» - Москва: Физкультура и спорт, 2009-496 с.

3. Лазарофф М. «Анатомия и физиология» - Москва: Астрель, 2009-477 с.

4. Маркосян А.А. «Физиология» - Москва: Медицина, 2008-350 с.

5. Сапин М.Р. «Анатомия и физиология» - Москва: Академия, 2009-432 с.

рефераты
РЕФЕРАТЫ © 2010