рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Вычисления по теории вероятностей

Задача 1. В партии из 60 изделий 10 - бракованных. Определить вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными:

а) ровно 2 изделия;

б) не более 2 изделий.

Решение.

А)

Используя классическое определение вероятности:

Р(А) - вероятность события А, где А - событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными ровно 2 изделия;

m - кол-во благоприятных исходов события А;

n - количество всех возможных исходов;

Б)

Р(А') - вероятность события А', где А' - событие, когда среди выбранных наудачу изделий для проверки 5 изделий окажутся бракованными не более 2 изделий,

;

- кол-во благоприятных исходов события ;

- кол-во благоприятных исходов события ;

- кол-во благоприятных исходов события ;

n' - количество всех возможных исходов;

Ответ: вероятность того, что среди выбранных наудачу для проверки 5 изделий окажутся бракованными: а) ровно 2 изделия равна 16%. б) не более 2 изделий равна 97%.

Задача 2. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй - 2%, третий - 3%. Определить вероятность попадания на сборку небракованной детали, если с каждого автомата в цех поступило соответственно 20, 10, 20 деталей.

Решение.

По формуле полной вероятности:

где А - взятие хорошей детали, - взятие детали из первого (второго / третьего) автомата, - вероятность взятия детали из первого (второго / третьего) автомата, - вероятность взятия хорошей детали из первого (второго / третьего) автомата, - вероятность попадания на сборку небракованной детали.

; (т. к. ) = 1% = 0.01)

;

;

Ответ: Вероятность попадания на сборку небракованной детали равна 98%.

Задача 3. В сборочный цех завода поступают детали с трех автоматов. Первый автомат дает 1% брака, второй - 2%, третий - 3%. С каждого автомата поступило на сборку соответственно 20, 10, 20 деталей. Взятая на сборку деталь оказалась бракованной. Найти вероятность того, что деталь поступила с 1-го автомата.

Решение.

По формуле полной вероятности:

где А' - взятие бракованной детали, - взятие детали из первого (второго / третьего) автомата, - вероятность взятия детали из первого (второго / третьего) автомата, - вероятность взятия бракованной детали из первого (второго / третьего) автомата, - вероятность попадания на сборку бракованной детали.

; (согласно условию)

;

;

Согласно формуле Байеса:

Ответ: Вероятность того, что деталь поступила с 1-го автомата равна 20%.

Задача 4. Рабочий обслуживает 18 станков. Вероятность выхода станка из строя за смену равна . Какова вероятность того, что рабочему придется ремонтировать 5 станков? Каково наивероятнейшее число станков, требующих ремонта за смену?

Решение.

Используя формулу Бернулли, вычислим, какова вероятность того, что рабочему придется ремонтировать 5 станков:

где n - кол-во станков, m - кол-во станков, которые придётся чинить, p - вероятность выхода станка из строя за смену, q =1-р - вероятность, не выхождения станка из строя за смену.

.

Ответ: Вероятность того, что рабочему придется ремонтировать 5 станков равна 15%. Наивероятнейшее число станков, требующих ремонта за смену равно 3.

Задача 5. В двух магазинах, продающих товары одного вида, товарооборот (в тыс. грн.) за 6 месяцев представлен в таблице. Можно ли считать, что товарооборот в первом магазине больше, чем во втором? Принять = 0,05.

Все промежуточные вычисления поместить в таблице.

Магазин №1

Магазин №2

20,35

20,01

20,60

23,55

32,94

25,36

37,56

30,68

40,01

35,34

25,45

23,20

Пусть, a1 - товарооборот в 1 магазине, a2 - товарооборот во 2 магазине.

Формулируем гипотезы Н0 и Н1:

Н0: a1 = a2

Н1: a1 ? a2

xi

xi-a1

(xi-a1)2

yi

yi-a2

(yi-a2)2

20,35

-9,135

83,44823

20,01

-6,35

40,32

20,6

-8,885

78,94323

23,55

-2,81

7,896

32,94

3,455

11,93703

25,36

-1

1

37,56

8,075

65,20563

30,68

18,66

40,01

10,525

110,7756

35,34

4,32

80,64

25,45

-4,035

16,28123

23,20

8,98

9,98

?

176,91

366,591

158,14

-3,16

158,496

a1 = = = 29,485, a2 = =

1 = = 73.32

2 = =

n 1 = n 2 = n =6

Вычислю выборочное значение статистики:

ZВ = * =

Пусть = 0,05. Определяем необходимый квантиль распределения Стьюдента: (n1+n2-2)= 2.228.

Следовательно, так как ZВ=0,74 < =2,228, то мы не станем отвергать гипотезу Н0, потому что это значит, что нет вероятности того, что товарооборот в первом магазине больше, чем во втором.

Задача 6. По данному статистическому ряду:

Построить гистограмму частот.

Сформулировать гипотезу о виде распределения.

Найти оценки параметров распределения.

На уровне значимости = 0,05 проверить гипотезу о распределении случайной величины.

Все промежуточные вычисления помещать в соответствующие таблицы.

Интервал

Частота случайной величины

1 - 2

5

2 - 3

8

3 - 4

19

4 - 5

42

5 - 6

68

6 -7

44

7 - 8

21

8 - 9

9

9 - 10

4

1. Гистограмма частот:

2. Предположим, что моя выборка статистического ряда имеет нормальное распределение.

3. Для оценки параметров распределения произведем предварительные расчеты, занесем их в таблицу:

Интервалы

Частота,

mi

Середина

Интервала, xi

xi*mi

xi2*mi

1

1-2

5

4,5

7,5

112,5

2

2-3

8

2,5

20

50

3

3-4

19

3,5

66,5

232,75

4

4-5

42

4,5

189

350,5

5

5-6

68

5,5

374

2057

6

6-7

44

6,5

286

1859

7

7-8

21

7,5

157,5

1181,25

8

8-9

9

8,5

76,5

650,25

9

9-10

4

9,5

38

361

?

n=220

1215

7354,25

Найдем оценки параметров распределения:

= = 5,523

2= 2 = 2,925 = = 1,71

4. все вычисления для проверки гипотезы о распределении занесем в таблицы.

Интервалы

Частоты, mi

t1

t2

Ф(t1)

Ф(t2)

pi

1

-? - 2

5

-?

-2,06

0

0,0197

0,0197

2

2-3

8

-2,06

-1,47

0,0197

0,0708

0,0511

3

3-4

19

-1,47

-0,89

0,0708

0,1867

0,1159

4

4-5

42

-0,89

-0,31

0,1867

0,3783

0,1916

5

5-6

68

-0,31

0,28

0,3783

0,6103

0,232

6

6-7

44

0,28

0,86

0,6103

0,8051

0,1948

7

7-8

21

0,86

1,45

0,8051

0,9265

0,1214

8

8-9

9

1,45

2,03

0,9265

0,9788

0,0523

9

9-?

4

2,03

?

0,9788

1

0,0212

Где: t1= , t2 = , ai, bi - границы интервала, Ф(t) - Функция распределения нормального закона.

pi = Ф(t2) - Ф(t1)

Так как проверка гипотезы о распределении производится по критерию , составляем еще одну таблицу для вычислений:

№ интервала

pi

mi

n* pi

1

2

0,0708

13

15,57

0,4242

3

0,1159

19

25,5

1,6569

4

0,1916

42

42,15

0,0005

5

0,232

68

51,04

5,6336

6

0,1948

44

42,86

0,0303

7

0,1214

21

26,71

1,2207

8

9

0,0735

13

16,17

0,6214

?

9,5876

Согласно расчетам, = = 9,5876

Выбираем уровень значимости = 0,05 и вычисляем 1-? (k-r-1), где k - число подмножеств, r - число параметров в распределении.

0,95(7-2-1) = 0,95(4) = 9,49.

Сравнив полученное значение с расчетным можно сделать вывод, что так как расчетное значение больше, следовательно, гипотеза о нормальном распределении выборки статистического ряда не принимается.

Задача 7. По данным выборки вычислить:

а) выборочное значение коэффициента корреляции;

б) на уровне значимости = 0,05 проверить гипотезу о значимости коэффициента корреляции.

Решение

Формулируем гипотезы Н0 и Н1:

Н0: a1 = a2

Н1: a1 ? a2

xi

xi-a1

(xi-a1)2

yi

yi-a2

(yi-а2)2

xi*yi

4,40

-0,476

0,2266

3,27

-0,47

0,2209

14,388

5,08

0,204

0,0416

4,15

0,41

0,1681

21,082

4,01

-0,866

0,7499

2,95

-0,79

0,6241

11,829

3,61

-1,266

1,6027

1,96

-1,78

3,1684

7,075

6,49

1,614

2,605

5,78

2,04

4,1616

37,512

4,23

-0,646

0,4173

3,06

-0,68

0,4824

12,944

5,79

0,914

0,8354

4,45

0,71

0,5041

25,765

5,52

0,644

0,4147

4,23

0,49

0,2401

23,349

4,68

-0,196

0,0384

3,54

-0,2

0,04

16,567

4,95

0,074

0,0055

4,01

0,27

0,0729

19,849

?

48,76

-

6,9371

37,4

-

9,6626

190,36

a1 = = 4,876, a2 = = 3,74

1 = = 0,7708

2 = = 1,0736

n 1 = n 2 = n =6

а) Вычислим выборочное значение коэффициента корреляции

=

б) Проверим на уровне значимости =0,05 гипотезу о значимости коэффициента корреляции:

(n-2)=2,306

Вычислим величину

=

получаем, что >0.6319 т.е. попадает в критическую область, следовательно, коэффициент корреляции можно считать значимым.

Задача 8. По данным выборки найти:

а) точечные оценки математического ожидания и дисперсии;

б) с доверительной вероятностью р =1- найти доверительные интервалы для математического ожидания и дисперсии.

?

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

0.01

3,85

8,87

21,26

6,72

0,29

15,48

7,48

0,33

0,34

1,37

Решение

а) Вычислим математическое ожидание и дисперсию. Промежуточные значения поместим в таблицу.

xi

mi

mixi

mixi2

3,85

1

3,85

14,822

8,87

1

8,87

78,677

21,26

1

21,26

451,987

6,72

1

6,72

45,158

0,29

1

0,29

0,0840

15,48

1

15,48

239,630

7,48

1

7,48

55,950

0,33

1

0,33

0,109

0,34

1

0,34

0,115

1,37

1

1,37

1,877

?65,99

10

65,99

888,409

Математическое ожидание:

m==

Дисперсия:

?2==

б) с доверительной вероятностью р =1- найти доверительные интервалы для математического ожидания и дисперсии, считая, что выборка получена из нормальной совокупности.

Определим из таблиц значение , где ;

Доверительный интервал для математического ожидания имеет вид:

Подставив полученные значения, найдем доверительный интервал для математического ожидания:

0,271<M<12.927

Доверительный интервал для дисперсии имеет вид:

Доверительный интервал для дисперсии равен: 23,192<D<240,79.

рефераты
РЕФЕРАТЫ © 2010