рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Системы линейных уравнений и неравенств

Системы линейных уравнений и неравенств

Основные вопросы лекции: основные понятия и определения теории систем уравнений; система n линейных уравнений с n неизвестными; метод обратной матрицы; метод Крамера; метод Гаусса; теорема Кронекера-Капелли; система n линейных уравнений с m неизвестными; однородные системы линейных уравнений; фундаментальная система решений; структура общего решения.

Система m линейных уравнений с nпеременными имеет вид:

или

(1)

где a11, a12, … , amn-- произвольные числа, называемые соответственно коэффициентами при переменных и b1,b2, … , bm - свободными членами уравнений.

Решением системы(1) называется такая совокупность nчисел х1, х2, ... , хn , при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений.

Совместная система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Запишем систему (1) в матричной форме. Обозначим:

; В=(b1, b2, … , bn)т; Х=(x1, x2, … , xn)т

где А-- матрица коэффициентов при переменных, или матрица системы, X -- матрица-столбец переменных; В -- матрица-столбец свободных членов.

На основании определения равенства матриц систему (1) можно записать в виде:

А*Х=B (2)

А матрица состоящая из А, В, Х матриц называется расширенной матрицей:

- расширенная матрица.

Метод Гаусса -- метод последовательного исключения переменных -- заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Рассмотрим решение системы (1) m линейных уравнений с nпеременными в общем виде:

(3)

Если m=n, то рассмотрим расширенную матрицу. Учитывая правую часть, приведем данную матрицу к треугольному виду:

Ситема линейных уравнении соотвествующее данной матрице запишем в следуюшем виде

(4)

Если в данном уравнении cnn?0, cn-1n-1?0, ... , c33?0, c22?0, a11?0 то, в первую очередь найдем

xn, а затем постепенно поднимаясь находим остольные решения - xn-1, … , x3, x2, x1.

Формула Крамера

Теорема Крамера. Пусть |A|-- определитель матрицы системы А, а Дj -- определитель матрицы, получаемой из матрицы А заменой j-го столбца столбцом свободных членов. Тогда, если Д ?0, то система имеет единственное решение, определяемое по формулам:

(5)

Формулы (5) получили название формул Крамера.

Метод обратной матрицы

Пусть число уравнений системы (1) равно числу переменных, т.е. m=n. Тогда матрица системы является квадратной, а ее определитель Д=|A| называется определителем системы.

(1) уравнение можно записать в матричном виде

А*Х=B (6)

, , .

Умножая слева обе части матричного равенства (6) на матрицу А-1,получим А-1(АХ)=А-1В. Так как А-1(АХ)=( А-1А)Х=ЕХ=Х,то решением системы методом обратной матрицы будет матрица-столбец

Х=А-1*B (7).

Система n линейных уравнений с n переменными

Решение системы n линейных уравнений с n переменными находять ниже укаженными методами:

1) Метод обратной матрицы;

2) Формула Крамера;

3) Метод Гаусса.

Теорема Кронекер - Капелли. Система m линейных уравнений с n переменными

Теорема Кронекера--Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы этой системы.

Для совместных систем линейных уравнений верны следующие теоремы.

1. Если ранг матрицы совместной системы равен числу переменных, т.е. r=n, то система (1) имеет единственное решение.

2. Если ранг матрицы совместной системы меньше числа переменных, т.е. r<n, то система (1) неопределенная и имеет бесконечное множество решений.

Системы линейных однородных уравнений

Система mлинейных уравнений с n переменными называется системой линейных однородныхуравнений, если все их свободные члены равны нулю. Такая система имеет вид:

(8)

Система линейных однородных уравнений всегда совместна, так как она всегда имеет, по крайней мере, нулевое (или тривиальное) решение (0; 0; ...; 0).

Систему (8) можно записать а виде:

А*Х=0 (9).

Если в системе (8) m=n, а ее определитель отличен от нуля, то такая система имеет только нулевое решение, как это следует из теоремы и формул Крамера. Ненулевые решения, следовательно, возможны лишь для таких систем линейных однородных уравнений, в которых число уравнений меньше числа переменных или при их равенстве, когда определитель системы равен нулю.

Иначе: система линейных однородных уравнений имеет ненулевые решения тогда и только тогда, когда ранг ее матрицы коэффициентов при переменных меньше числа переменных, т.е. при r(A)<n.

рефераты
РЕФЕРАТЫ © 2010