рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Произведение двух групп

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

"Гомельский государственный университет

имени Франциска Скорины"

математический факультет

Кафедра алгебры и геометрии

Произведение двух групп

Курсовая работа

Исполнитель:

студентка группы H.01.01.01 М-31

Закревская С.А.

Научный руководитель:

доктор физико-математических наук,

профессор кафедры Алгебры и геометрии

Монахов В. С.

Гомель 2005

Содержание

Введение

1 О произведении двух групп, одна из которых содержит циклическую подгруппу индекса

2 О произведении двух групп с циклическими подгруппами индекса 2

3 Произведение разрешимой и циклической групп

3.1. Вспомогательные результаты

3.2. Доказательства теорем 1 и 2

Заключение

Список литературы

Введение

Данную работу можно рассматривать как продолжение трудов Б. Хупперта и В. Скотта. В ней приводятся свойства конечных групп, являющихся произведением двух групп, а именно являющихся произведением двух групп, одна из которых содержит циклическую подгруппу индекса , произведением двух групп с циклическими подгруппами индекса 2, произведением разрешимой и циклической групп.

Рассматриваются вопросы разрешимости, сверхразрешимости и изоморфизма конечных групп, с приведенными выше свойствами и приводится описание двух классов неразрешимых факторизуемых групп. Так же приводятся доказательства следующих теорем:

Теорема 1.1 . Если и - группы с циклическими подгруппами индексов , то конечная группа разрешима.

Теорема 1.2 . Пусть - группа Шмидта, а - группа с циклической подгруппой индекса . Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .

Теорема 1.3 . Пусть - 2-разложимая группа, а группа имеет циклическую инвариантную подгруппу нечетного порядка и индекса 4. Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .

Теорема 2.1 . Пусть конечная группа , где и - группы с циклическими подгруппами индексов . Тогда разрешима, и для любого простого нечетного .

Теорема 2.2 . Если группы и содержат циклические подгруппы нечетных порядков и индексов , то конечная группа сверхразрешима.

Теорема 2.3 . Пусть конечная группа , где - циклическая подгруппа нечетного порядка, а подгруппа содержит циклическую подгруппу индекса . Если в нет нормальных секций, изоморфных , то сверхразрешима.

Теорема 3.1 . Пусть конечная группа является произведением разрешимой подгруппы и циклической подгруппы и пусть . Тогда , где - нормальная в подгруппа, и или для подходящего .

Теорема 3.2 . Конечная группа, являющаяся произведением 2-нильпотентной подгруппы и циклической подгруппы, непроста. Если циклический фактор имеет нечетный порядок, то группа разрешима.

Теорема 3.3 . Если - простая группа, где - холловская собственная в подгруппа, а - абелева -группа, то есть расширение группы, изоморфной секции из , с помощью элементарной абелевой 2-группы. В частности, если циклическая, то есть расширение абелевой группы с помощью элементарной абелевой 2-группы.

1. О произведении двух групп, одна из которых содержит циклическую подгруппу индекса

Доказывается, что конечная группа разрешима, если группы и содержат циклические подгруппы индексов . Приводится описание двух классов неразрешимых факторизуемых групп. Библ. 18 назв.

В работе Б. Хупперт установил разрешимость конечной группы, которая является произведением двух диэдральных подгрупп. В. Скотт получил разрешимость группы , допустив в качестве множителей и еще так называемые дициклические группы. Диэдральные и дициклические группы содержат циклические подгруппы индекса 2, но не исчерпывают весь класс групп с циклическими подгруппами индекса 2. В настоящей заметке доказана

Теорема 1 . Если и - группы с циклическими подгруппами индексов , то конечная группа разрешима.

Если подгруппа нильпотентна, а в есть циклическая подгруппа индекса 2, то, как показали H. Ито и Б. Хупперт, конечная группа разрешима. Дополнением этого результата являются теоремы 2 и 3.

Теорема 2 . Пусть - группа Шмидта, а - группа с циклической подгруппой индекса . Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .

обозначает наибольшую разрешимую инвариантную в подгруппу. Группой Шмидта называется ненильпотентная группа, все собственные подгруппы которой нильпотентны.

Теорема 3 . Пусть - 2-разложимая группа, а группа имеет циклическую инвариантную подгруппу нечетного порядка и индекса 4. Если и - конечная неразрешимая группа, то изоморфна подгруппе , содержащей , для подходящего .

Частным случаем теоремы 3, когда - абелева, а имеет порядок , - простое число, является теорема 8 Б. Хупперта.

Доказательства теорем 1--3 и составляют содержание настоящей заметки.

Рассматриваются только конечные группы. Все используемые определения и обозначения стандартны, их можно найти в обзоре С. А. Чунихина и Л. А. Шеметкова.

Вначале докажем несколько лемм.

Лемма 1 . Пусть в группе существует циклическая подгруппа индекса . Тогда каждая подгруппа и фактор-группа обладает, циклической подгруппой индекса . Доказательство осуществляется непосредственной проверкой.

Лемма 2 . Пусть , - собственная подгруппа группы , - подгруппа четного порядка с циклической силовской 2-подгруппой. Если , то содержит подгруппу индекса 2.

Доказательство. Если содержит инвариантную в подгруппу , то фактор-группа удовлетворяет условиям леммы. По индукции обладает подгруппой индекса 2, поэтому и в есть подгруппа индекса 2.

Пусть не содержит инвариантных в подгрупп . Тогда представление группы подстановками правых смежных классов по есть точное степени , где . Группу можно отождествить с ее образом в симметрической группе степени . Так как в силовская 2-подгруппа циклическая, то , где - инвариантное 2-дополнение. Пусть , . , и . Подстановка разлагается в произведение циклов

т. е. подстановка имеет циклов, каждый длины . Декремент подстановки равен и есть нечетное число, поэтому - нечетная подстановка. Теперь , а так как индекс в равен 2, то - подгруппа индекса 2 в группе .

Лемма 2 обобщает лемму А. В. Романовского.

Замечание. Простая группа является произведением двух подгрупп и , причем , а - группа порядка с циклической силовской 2-подгруппой. Этот пример показывает, что требование отбросить нельзя.

Лемма 3 . Пусть - дважды транзитивная группа подстановок на множестве и пусть - стабилизатор некоторой точки . Тогда все инволюции из центра содержатся в .

Доказательство. Пусть . Допустим, что существует , причем . Так как транзитивна на , то . Ho , поэтому и - тождественная подстановка. Противоречие. Следовательно, фиксирует только . Теперь подстановка содержит только один цикл длины 1, а так как - инволюция, то нечетен. Но , поэтому существует силовская 2-подгруппа из с и . Если , то , отсюда и , т. е. . Теперь и из теоремы Глаубермана следует, что .

Лемма 4 . Пусть центр группы имеет четный порядок и силовская 2-подгруппа из либо циклическая, либо инвариантна в . Если - группа с циклической подгруппой индекса , то группа непроста.

Доказательство. Пусть - циклическая подгруппа в , для которой , а - максимальная в подгруппа, содержащая . Тогда . Если , то и по лемме С. А. Чунихина группа непроста. Значит, .

Допустим, что порядок нечетен. Если , то . Если , то ввиду леммы 2 и поэтому опять . Рассмотрим представление подстановками смежных классов по . Так как - максимальная в подгруппа, то - примитивная группа подстановок степени . Если - простое число, то либо разрешима, либо дважды транзитивна. Если - составное число, то, так как - регулярная группа подстановок при этом представлении, - опять дважды транзитивна. Из леммы 3 следует, что непроста.

Пусть порядок четен. Если , то непроста по лемме 2. Значит, и . Пусть - силовская 2-подгруппа из . Если инвариантна в , то инвариантна и в . Следовательно, - циклическая группа. Но не является силовской в , поэтому содержится как подгруппа индекса 2 в некоторой группе . Теперь для инволюции из центра имеем , т. е. не максимальная в . Противоречие.

Следствие. Пусть группа , где группа содержит циклическую подгруппу индекса . Если - 2-разложимая группа четного порядка, то группа непроста.

Лемма 5 . Пусть группа содержит циклическую инвариантную подгруппу нечетного порядка и индекса 2. Если - 2-разложимая группа, то группа разрешима.

Доказательство. Применим индукцию к порядку . Если , то ввиду леммы 1 фактор-группа удовлетворяет условиям леммы. По индукции, разрешима, отсюда разрешима и .

Пусть . Если - циклическая, то разрешима по теореме В. А. Ведерникова. Поэтому , - циклическая подгруппа индекса 2, . Пусть , где - силовская 2-подгруппа из , - ее дополнение. Если , то разрешима. Теперь и можно считать силовской 2-подгруппой в . Так как и , то . Пусть и . Тогда и . По лемме С. А. Чунихина подгруппа максимальна в и . Представление группы подстановками смежных классов по подгруппе дважды транзитивное: если - простое число, если - составное. Из леммы 3 вытекает теперь, что .Противоречие.

Доказательство теоремы 1 . Применим индукцию к порядку группы G. Пусть и - циклические инвариантные подгруппы в и в соответственно, чьи индексы равны 1 или 2, а и - те силовские 2-подгруппы из и , для которых и есть силовская 2-подгруппа . Будем считать, что . Если , то и разрешима по теореме Ито-Хупперта. Поэтому в дальнейшем полагаем, что . Ввиду леммы 1 каждая фактор-группа удовлетворяет условиям теоремы, поэтому

Допустим, что . Если , то и . Так как разрешима, то . Если , то и разрешима.

Пусть теперь . Тогда и . Так как не является силовской подгруппой в , то содержится как подгруппа индекса 2 в некоторой 2-группе . Обозначим через силовскую 2-подгруппу из . Очевидно, что инвариантна в .

Предположим, что и пусть - инволюция из . В все подгруппы характеристические и инвариантна в , поэтому и . Пусть - максимальная в подгруппа, которая содержит . Тогда разрешима по индукции. Если , то содержится в и . Значит, . Так как - собственная в подгруппа, то , и . Теперь - дважды транзитивная группа степени на множестве смежных классов по : если - простое число, то применимо утверждение из, стр. 609; если составное. Из леммы 3 получаем, что . Противоречие.

Следовательно, . Если , то и .Так как не содержит подгрупп, инвариантных в , то представление группы подстановками по подгруппе - точное степени 4. Поэтому - группа диэдра порядка 8, и . В этом случае неабелева. Напомним, что и . Таким образом, для силовской 2-подгруппы из имеем: - группа порядка 4 или неабелева группа порядка 8 (если ).

Предположим, что порядки групп и делятся одновременно на нечетное простое число и пусть и - силовские -подгруппы из и соответственно. Так как инвариантна в , a инвариантна в , то и - силовская -подгруппа в . Без ограничения общности можно считать, что . По теореме VI.10.1 из группа содержит неединичную подгруппу , инвариантную в . Но теперь и , а так как инвариантна в , a разрешима, то по лемме С. А. Чунихина. Противоречие. Следовательно, порядки и не имеют общих нечетных делителей. В частности, в группе силовские подгруппы для нечетных простых чисел циклические.

Пусть - минимальная инвариантная в подгруппа и - силовская 2-подгруппа из , которая содержится в . Так как , то неразрешима и . Подгруппа даже простая потому, что силовские подгруппы по нечетным простым числам циклические.

Пусть вначале . Тогда и неабелева. По теореме П. Фонга из группа диэдральная или полудиэдральная. Но в этих случаях . Непосредственно проверяется, что диэдральная и полудиэдральная группа порядка 16 не является произведением двух групп порядка 4.

Предположим теперь что . Тогда - элементарная абелева подгруппа или диэдральная. Если абелева, то или группа Янко порядка 175560. Так как неабелева, то и индекс в четен. Группа разрешима, поэтому и или . Ho группа порядка 3, a . Противоречие. Если - диэдральная группа порядка 8, то - нечетное простое число или . Но группы и не допускают нужной факторизации, поэтому - собственная в подгруппа. Теперь или . Если , то - диэдральная группа порядка 16, а так как , то . Противоречие. Если , то и в существует подгруппа порядка или .

Пусть, наконец, . Тогда и . Так как фактор-группа разрешима по индукции, то и . Используя самоцентрализуемость силовской -подгруппы в , нетрудно показать, что не допускает требуемой факторизации. Теорема доказана.

Доказательство теоремы 2 . Допустим, что теорема неверна и группа - контрпример минимального порядка. Фактор-группа группы Шмидта есть либо группа Шмидта, либо циклическая -группа. Поэтому в силу индукции и теоремы 1 мы можем считать, что . Пусть - произвольная минимальная инвариантная в подгруппа. Если , то , а так как - нильпотентная группа, то разрешима по теореме Ито--Хупперта или по теореме Виландта--Кегеля. Отсюда разрешима и . Противоречие. Значит, , в частности, разрешима. Допустим, что . Тогда и удовлетворяет условиям леммы. Поэтому изоморфна подгруппе группы , содержащей для подходящего . Так как есть прямое произведение изоморфных простых неабелевых групп, то и . Отсюда . Подгруппа инвариантна в так как , то разрешима и . Теперь изоморфна некоторой группе автоморфизмов , т. е. из заключения теоремы. Противоречие. Значит, .

Таким образом, если - произвольная инвариантная в подгруппа, то .

Пусть , - инвариантная силовская -подгруппа, - силовская -подгруппа. Через обозначим циклическую подгруппу в , для которой . Допустим, что . В этом случае и если - подгруппа индекса 2 в , то - циклическая подгруппа индекса 2 в . По теореме 1 группа разрешима. Противоречие. Значит, . Теперь, если в есть инвариантная подгруппа четного индекса, то есть группа Шмидта с инвариантной силовской 2-подгруппой, что противоречит лемме 1.

Следовательно, и в нет инвариантных подгрупп четного индекса.

Допустим, что , тогда - группа нечетного порядка. Силовская 2-подгруппа из является силовской подгруппой в и по результату В. Д. Мазурова группа диэдральная или полудиэдральная. Если диэдральная, то по теореме 16.3 группа изоморфна или подгруппе группы . Так как не допускает требуемой факторизации, то следует из заключения теоремы. Противоречие. Значит, - полудиэдральная группа. Если - центральная инволюция из , то , поэтому и разрешима. По теореме Мазурова группа изоморфна или . Нетрудно проверить, что и не допускают требуемой факторизации. Значит, .

Пусть - максимальная в подгруппа, содержащая . Тогда, если , то и содержит подгруппу , инвариантную в по лемме Чунихина. В этом случае, и . Противоречие. Следовательно, .

Допустим, что не является силовской 2-подгруппой в . Тогда немаксимальна в , а так как и , то по лемме 2 порядок нечетен. Теперь и содержит подгруппу индекса 2. Противоречие.

Таким образом, - силовская 2-подгруппа группы . Теперь, и - максимальная в подгруппа. Представление подстановками смежных классов по дважды транзитивное и по лемме 3 порядок центра нечетен. Отсюда следует, что - абелева группа.

Пусть - минимальная инвариантная в подгруппа. Группа не является -группой, поэтому некоторая силовская в подгруппа циклическая и - простая группа. Теперь можно применить результат Уолтера. Так как и группе Янко и в группах типа и нормализатор силовской 2-подгруппы имеет порядок , a , то изоморфна , где или . Фактор-группа разрешима, поэтому и изоморфна некоторой группе автоморфизмов , т. е. из заключения теоремы. Противоречие. Теорема доказана.

Доказательство теоремы 3 . Пусть группа - контрпример минимального порядка, - циклическая подгруппа в и , где . Пусть , где - силовская 2-подгруппа , а - ее 2-дополнение в . Если - силовская 2-подгруппа , то и разрешима по теореме Ведерникова. Противоречие. Теперь можно считать силовской 2-подгруппой группы .

Предположим, что . Фактор-группа и - 2-разложимая группа. Очевидно, что циклическая подгруппа нечетного порядка инвариантна в и ее индекс равен 1, 2 или 4. В первых двух случаях группа разрешима по лемме 5, поэтому разрешима и . Противоречие. Если индекс равен 4, то по индукции и учитывая, что , получаем: группа изоморфна подгруппе , содержащей для некоторых . Противоречие. Следовательно, в нет разрешимых инвариантных подгрупп, отличных от единицы.

Теперь покажем, что силовская 2-подгруппа является диэдральной группой порядка 4 или 8. Если , то , и так как неразрешима, то диэдральная. Пусть не содержится в .

Предположим, что и пусть , где - инволюция из . Теперь и . Пусть вначале и максимальна в . Тогда - дважды транзитивная группа на множестве смежных классов по подгруппе : если - простое число; если - непростое число. Из леммы 3 получаем, что . Противоречие. Пусть - максимальная в подгруппа, которая содержит . Тогда и . Кроме того, . Пусть - минимальная инвариантная в подгруппа, которая содержится в , существует по лемме Чунихина, а так как , то , а следовательно, и неразрешимы. По индукции изоморфна подгруппе , содержащей , для некоторых . Все инвариантные в подгруппы неразрешимы, поэтому , а так как - минимальная инвариантная в подгруппа, то . B силу леммы 5 , поэтому разрешима. Но тогда и изоморфна группе автоморфизмов группы , т. е. из заключения теоремы. Противоречие.

Значит, , поэтому не содержит инвариантных в подгрупп, отличных от 1. Следовательно, представление группы подстановками смежных классов по подгруппе точное степени 4. Отсюда группа есть группа диэдра порядка 8.

Таким образом, силовская 2-подгруппа в группе есть диэдральная группа порядка 4 или 8. По результату Горенштейна - Уолтера группа изоморфна , или подгруппе группы . Так как , не допускает требуемой факторизации, то группа - из заключения теоремы. Противоречие. Теорема доказана.

В заключение отметим, что, используя технику доказательств теорем 1--3 и следствие леммы 4, можно получить описание неразрешимых групп при условии, что - 2-разложимая группа, а в группе существует циклическая подгруппа индекса .

2. О произведении двух групп с циклическими подгруппами индекса 2

В 1953 г. Б. Хупперт установил разрешимость конечной группы, которая является произведением двух диэдральных подгрупп. Развивая этот результат, В. Скотт получил разрешимость конечной группы , допустив в качестве множителей еще так называемые дициклические группы. Эти результаты достаточно подробно изложены в монографии. Диэдральные и дицикдические группы содержат циклические подгруппы индекса 2, но далеко не исчерпывают весь класс групп с циклическими подгруппами индекса 2.

В 1974 г. автор установил разрешимость конечной группы при условии, что факторы и содержат циклические подгруппы индексов 2, тем самым решив задачу, рассматриваемую Хуппертом и Скоттом. В настоящей заметке показывается, что 2-длина таких групп не превышает 2, а -длина равна 1 для любого нечетного . Эти оценки точные, на что указывает пример симметрической группы . Получены также два признака сверхразрешимости конечной факторизуемой группы.

Все встречающиеся определения и обозначения общеприняты. В частности, - множество простых делителей порядка , a - циклическая группа порядка .

Лемма 1 . Метациклическая группа порядка для нечетного простого неразложима в полупрямое произведение нормальной элементарной абелевой подгруппы порядка и подгруппы порядка .

Доказательство. Допустим противное и пусть - метациклическая группа порядка , разложимая в полупрямое произведение нормальной элементарной абелевой подгруппы порядка и подгруппы порядка , - нечетное простое число. Ясно, что неабелева. Если содержит нормальную подгруппу порядка с циклической фактор-группой , то содержится в центре и абелева по лемме 1.3.4, противоречие. Следовательно, содержит циклическую подгруппу индекса и подгруппа , порожденная элементами порядка , является элементарной абелевой подгруппой порядка по теоремам 5.4.3 и 5.4.4. Теперь , и подгруппы порядка не существует. Значит, допущение неверно и лемма справедлива.

При утверждение леммы неверно, контрпримером служит диэдральная группа порядка 8.

Лемма 2 . Разрешимая конечная группа с циклической подгруппой Фиттинга сверхразрешима.

Доказательство. Пусть - конечная разрешимая группа с циклической подгруппой Фиттинга . Так как , то как группа автоморфизмов циклической группы будет абелевой по теореме 1.3.10, поэтому сверхразрешима.

Лемма 3 . Если в сверхразрешимой группе нет неединичных нормальных 2-подгрупп, то силовская 2-подгруппа абелева.

Доказательство. Коммутант сверхразрешимой группы нильпотентен (теорема VI.9.1), поэтому силовская 2-подгруппа из коммутанта нормальна в группе. Если коммутант имеет нечетный порядок, то силовская 2-подгруппа в группе абелева.

Напомним, что - наибольшая нормальная в -подгруппа, - центр группы , а - наименьшая нормальная в подгруппа, содержащая . Через обозначается -длина группы .

Лемма 4 . Пусть и - подгруппы конечной группы , обладающие, следующими свойствами:

1) для всех ;

2) , где .

Тогда .

Доказательство. См. лемму 1.

Теорема 1 . Пусть конечная группа , где и - группы с циклическими подгруппами индексов . Тогда разрешима, и для любого простого нечетного .

Доказательство. По теореме из группа разрешима. Для вычисления -длины воспользуемся индукцией по порядку группы . Вначале рассмотрим случай нечетного . По лемме VI.6.4 подгруппа Фраттини единична и в группе единственная минимальная нормальная подгруппа. По теореме III.4.5 подгруппа Фиттинга - минимальная нормальная подгруппа. Так как , то - -группа. Если , то - абелева группа порядка, делящего , а так как , то . Силовская -подгруппа в метациклическая по теореме III.11.5, поэтому - элементарная абелева порядка и изоморфна подгруппе из , в которой силовская -подгруппа имеет порядок . Так как для некоторой максимальной в подгруппы , то из леммы 1 получаем что - силовская в подгруппа и .

Рассмотрим теперь 2-длину группы . Ясно, что и - единственная минимальная нормальная в подгруппа, которая является элементарной абелевой 2-подгруппой. Пусть и - -холловские подгруппы из и соответственно. По условию теоремы - циклическая нормальная в подгруппа, - циклическая нормальная в подгруппа. Теперь - -холловская в подгруппа по теореме VI.4.6, и можно считать, что . Для любого элемента имеем: , a по лемме 4 либо , либо . Но если , то и централизует , что невозможно. Значит, , а так как в только одна минимальная нормальная подгруппа, то и - 2-группа. Фактор-группа не содержит нормальных неединичных 2-подгрупп, поэтому подгруппа Фиттинга имеет нечетный порядок. Но -холловская в подгруппа циклическая, а по лемме 2 фактор-группа сверхразрешима и силовская 2-подгруппа в абелева по лемме 3, Теперь по теореме VI.6.6 и . Теорема доказана.

Лемма 5 . Конечная группа с подгруппой Фиттинга индекса сверхразрешима.

Доказательство. Проведем индукцией по порядку группы. Пусть - конечная группа, в которой подгруппа Фиттинга имеет индекс . По индукции можно считать, что подгруппа Фраттини единична и в группе только одна минимальная нормальная подгруппа. Поэтому F - минимальная нормальная в подгруппа. Пусть - инволюция из . Если , то - нормальная в подгруппа. Если , то и - неединичная нормальная в подгруппа. Итак, в группе имеется нормальная подгруппа простого порядка. По индукции сверхразрешима, значит, сверхразрешима и группа .

Лемма 6 . Конечная группа, являющаяся произведением двух подгрупп порядков, делящих , сверхразрешима.

Доказательство. Воспользуемся индукцией по порядку группы. Пусть конечная группа , где подгруппы и имеют порядки, делящие , - простое число. Все фактор-группы группы удовлетворяют условиям леммы, поэтому по индукции нетривиальные фактор-группы группы сверхразрешимы. Следовательно, подгруппа Фраттини группы единична, а подгруппа Фиттинга - минимальная нормальная в подгруппа. По лемме 2 подгруппа нециклическая.

Если - 2-группа, то и изоморфна подгруппе группы , поэтому - группа порядка 3, а группа имеет порядок 12 и содержит подгруппу порядка 6. Следовательно, сверхразрешима.

Пусть теперь - -группа. Так как сверхразрешима по индукции, то 2-нильпотентна. Но , так как , значит, - 2-группа, которая по лемме 5 имеет порядок 4. Группа неприводимо действует на подгруппе , поэтому циклическая по теореме Машке. С другой стороны, и силовская 2-подгруппа из есть произведение двух подгрупп и порядков 2. Противоречие. Лемма доказана.

Теорема 2. Если группы и содержат циклические подгруппы нечетных порядков и индексов , то конечная группа сверхразрешима.

Доказательство. Воспользуемся индукцией по порядку группы. По теореме 1 группа разрешима. Поскольку условия теоремы переносятся на все фактор-группы, то по индукции все нетривиальные фактор-группы группы сверхразрешимы. Поэтому подгруппа Фраттини группы единична, а подгруппа Фиттинга - единственная минимальная нормальная в подгруппа. Ясно, что имеет непростой порядок. Если - 2-группа, то порядка 4 и изоморфна подгруппе группы . Но теперь порядок делит 12, и сверхразрешима по лемме 6.

Следовательно, - -группа порядка . Силовская -подгруппа в метациклическая по теореме III.11.5, поэтому - элементарная абелева порядка и изоморфна подгруппе группы , в которой силовская -подгруппа имеет порядок . Так как для некоторой максимальной в подгруппы , то из леммы 1 получаем, что - силовская в подгруппа и можно считать, что , где .

Через - обозначим разность . Так как -холловские подгруппы из и из нормальны в и соответственно, то - -холловская в подгруппа. Если , то сверхразрешима по лемме 6. Пусть . Для любого элемента имеем: и по лемме 4 либо , либо . Если , то из минимальности получаем, что и централизует , что невозможно. Значит, и . Но в единственная минимальная нормальная подгруппа, поэтому и делит . Но если , то нормальна в , противоречие. Значит, .

Так как сверхразрешима и - -холловская подгруппа в , то нормальна в и по лемме Фраттини содержит силовскую 2-подгруппу из . Ясно, что . Подгруппа ненормальна в , значит, , но теперь нормальна в и нормальна в , противоречие. Теорема доказана.

Теорема 3 . Пусть конечная группа , где - циклическая подгруппа нечетного порядка, а подгруппа содержит циклическую подгруппу индекса . Если в нет нормальных секций, изоморфных , то сверхразрешима.

Доказательство. Воспользуемся индукцией по порядку группы. По теореме 1 группа разрешима, а так как условия теоремы переносятся на все фактор-группы, то подгруппа Фиттинга - единственная минимальная нормальная в подгруппа. Если - 2-группа, то содержится в и поэтому порядок равен 4, a изоморфна подгруппе группы . Если силовская 3-подгруппа из неединична, то действует на неприводимо и - нормальная в подгруппа, изоморфная , противоречие. Если , то - 2-группа и сверхразрешима.

Следовательно, - -группа порядка . Так как силовская -подгруппа в метациклическая по теореме III.11.5, то - элементарная абелева порядка и изоморфна подгруппе из , в которой силовская -подгруппа имеет порядок . Так как для некоторой максимальной в подгруппы , то из леммы 1 получаем, что - силовская в подгруппа и можно считать, что , где , a .

Через обозначим . Как и в теореме 2, легко показать, что -холловская подгруппа из неединична, а . Так как - -холловская в подгруппа и сверхразрешима, то нормальна в и содержит силовскую 2-подгруппу из , которая совпадает с силовской 2-подгруппой в . Подгруппа ненормальна в , поэтому . Но теперь нормальна в , а значит, и в , противоречие. Теорема доказана.

3. Произведение разрешимой и циклической групп

В настоящей заметке доказывается следующая

Теорема 1. Пусть конечная группа является произведением разрешимой подгруппы и циклической подгруппы и пусть . Тогда , где - нормальная в подгруппа, и или для подходящего .

означает произведение всех разрешимых нормальных в подгрупп.

Следствие. Если простая группа является произведением разрешимой и циклической подгрупп, то .

Несмотря на то, что среди при нечетном нет групп факторизуемых разрешимой подгруппой и циклической, группы допускают указанную факторизацию для каждого .

Из теоремы 1 вытекает

Теорема 2. Конечная группа, являющаяся произведением 2-нильпотентной подгруппы и циклической подгруппы, непроста. Если циклический фактор имеет нечетный порядок, то группа разрешима.

Работа состоит из двух параграфов. В первом параграфе приводятся необходимые вспомогательные результаты. Кроме того, доказывается теорема 3, которая является обобщением теоремы Виландта о разрешимости внешней группы автоморфизмов простой группы, содержащей подгруппу простого индекса. В 3.2 доказываются теоремы 1 и 2.

Все обозначения и определения стандартны. Запись означает, что конечная группа является произведением своих подгрупп и .

3.1 Вспомогательные результаты

Пусть - подгруппа группы . Тогда означает наибольшую нормальную в подгруппу, которая содержится в , a - наименьшую нормальную в подгруппу, которая содержит .

Лемма 1. Если и содержит подгруппу , нормальную в , то .

Лемма 2. Пусть и - нормальная в подгруппа. Если , то .

Доказательство. Поскольку , то . Так как , то

Лемма 3 . Если и абелева, то .

Доказательство. Пусть . Ясно, что и . Если , то и . Таким образом, и .

Лемма 4 . Пусть и не делит . Тогда не сопряжен ни с одним элементом из .

Доказательство. Если , то и делит . Но по лемме VI.4.5 из, поэтому . Противоречие.

Лемма 5 . Пусть - минимальная нормальная подгруппа группы и . Если разрешима, то и изоморфна подгруппе из .

Доказательство. . Так как разрешима, то и . По лемме 1.4.5 из группа есть группа автоморфизмов .

Лемма 6 . Пусть , где - собственная подгруппа , а циклическая. Если , то справедливо одно из следующих утверждений:

1) и - нормализатор силовской 2-подгруппы, а ;

2) , а ;

3) , а .

Доказательство. См. теорему 0.8 из.

Лемма 7 . Группа при любом является произведением разрешимой подгруппы и циклической.

Доказательство. Если , то утверждение следует из леммы 6. Пусть , и - силовская -подгруппа в . Известно, что циклическая и в есть циклическая подгруппа порядка . Так как и , то .

Лемма 8 . Если , то является произведением разрешимой и циклической подгрупп.

Доказательство. Известно, что , где - циклическая группа порядка, делящего , и нормализует подгруппу , где - силовская 2-подгруппа в . Так как , где - циклическая группа порядка , то и разрешима.

Лемма 9 . Группа является произведением разрешимой подгруппы и циклической. Группа не допускает указанной факторизации.

Доказательство. Группа имеет порядок и в ней содержится подгруппа индекса 2. Так как дважды транзитивна на множестве из 13 символов, то стабилизатор точки имеет порядок и является разрешимой группой. Поэтому является произведением разрешимой подгруппы порядка и циклической подгруппы порядка 13.

Покажем, что не содержит подгруппы индекса 13. Допустим противное и пусть - подгруппа порядка . Так как дважды транзитивна на смежных классах по , то центр имеет нечетный порядок по лемме 2.2, а по лемме Берноайда , где .

Пусть - подгруппа Фиттинга группы , где . Известно, что нормализатор силовской 3-подгруппы в имеет порядок , поэтому . Так как разрешима, то и изоморфна подгруппе из .

Предположим, что . Тогда делит порядок , а значит и . Но это невозможно, так как . Противоречие.

Следовательно, . Далее , так как - подгруппа нечетного порядка, поэтому . Ясно, что , a и . Силовская 2-подгруппа из является силовской в , значит, она полудиэдральная порядка 16, все инволюции сопряжены и централизатор каждой инволюции изоморфен порядка . Поэтому . как подгруппа из полудиэдральна при , либо циклическая, либо кватернионная, либо диэдральная порядка 4 или 8. В любом случае порядок не делится на 9. Таким образом, . Противоречие. Итак, не содержит подгруппы индекса 13.

Пусть , где - разрешимая подгруппа, а - циклическая. В силовокие 13-подгруппы самоцентрализуемы, поэтому 13 делит порядок . Так как в нет - холловской подгруппы, то 3 делит порядок . Но в силовская 3-подгруппа имеет экспоненту 3, поэтому в есть подгруппа порядка . Теперь силовская 13-подгруппа из не самоцентрализуема. Противоречие. Лемма 9 доказана.

Теорема 3 . Если - простая группа, где - холловская собственная в подгруппа, а - абелева -группа, то есть расширение группы, изоморфной секции из , с помощью элементарной абелевой 2-группы. В частности, если циклическая, то есть расширение абелевой группы с помощью элементарной абелевой 2-группы.

Доказательство. Из простоты и леммы Чунихина вытекает, что и максишльна в . Представление группы перестановками на смежных классах подгруппы будет точным и дважды транзитивным, следовательно, есть подгруппа перестановок симметрической группы S степени, равной порядку . Так как - регулярная и транзитивная группа и , то также транзитивна. Но по теореме 1.6.5, поэтому самоцентрализуема в .

Группа автоморфизмов , индуцированная элементами из , называется группой подстановочных автоморфизмов. Очевидно , а по теореме 3 подгруппа нормальна в и - элементарная абелева 2-группа.

По лемме Фраттини , поэтому обозначив будем иметь . Так как , то изоморфна секции из . В частности, если циклическая, то абелева и есть расширение абелевой группы с помощью элементарной абелевой 2-группы.

3.2 Доказательства теорем 1 и 2

Доказательство теоремы 1 . Предположим, что теорема неверна и пусть - контрпример минимального порядка. Так как , то и по лемме 3.

Допустим, что не максимальна в и пусть - прямое произведение минимальных нормальных в подгрупп и - наибольшее. Очевидно, содержит все минимальные нормальные в подгруппы. Так как , то и . Поэтому изоморфна подгруппе из .

Допустим, что для некоторого . Тогда и разрешима. Значит, . Пусть - подгруппа в , собственно содержащая . Так как и - нормальная в неединичкая подгруппа, то . Теперь минимальная нормальная в подгруппа из совпадает с и , противоречие. Таким образом, для любого . По индукции изоморфна подгруппе , где - есть прямое произведение, построенное из групп . Очевидно, что , поэтому также есть прямое произведение, построенное из групп . Следовательно, обладает этим же свойством и - подгруппа из . Противоречие.

Итак, максимальна в . Поэтому представление перестановками на множестве смежных классов подгруппы будет точным и примитивным. Так как , то в этом представлении регулярна и дважды транзитивна. Пусть минимальная нормальная в подгруппа. Применяя теорему 11.3 и результат Берноайда, заключаем, что проста и примитивна, т.е. максимальна в . Так как , то разрешима и по лемме 5. Таким образом, изоморфна подгруппе из .

Предположим, что . Тогда неразрешима, и . Так как , то по индукции изоморфна подгруппе из , а или и из заключения теоремы. Следовательно, и по лемме 2.

Пусть порядок четен. Тогда содержит подгруппу индекса 2 по лемме 4.1. По теореме Хольта подгруппа 2-транзитивна и изоморфна - степень нечетного простого числа или группа типа Ри в их обычных 2-транзитивных представлениях. Если , то из заключения теоремы. Внешняя группа автоморфизмов группы типа Ри имеет нечетный порядок, поэтому не содержится в группе автоморфизмов группы типа Ри.

Пусть теперь изоморфна - простое нечетное число. Тогда , где и , где - силовская -подгруппа из и . Из леммы 2 получаем . Так как в все инволюции сопряжены и имеет четный порядок, то по лемме 4 подгруппа имеет нечетный порядок, в частности не делит .

Предположим, что существует простое число , делящее и . Если , то по лемме 2.5 порядок делит , а так как , то делит . Если , то делит и элементарные вычисления и применение леммы 2.5 показывают, что делит . Так как , то в любом случае . Известно, что , поэтому и . Противоречие с леммой 2.5.

Следовательно, не может быть изоморфна . Случай, когда порядок четен, рассмотрен полностью.

Пусть порядок подгруппы нечетен. Тогда содержит некоторую силовскую 2-подгруппу из . По теореме О'Нэна подгруппа изоморфна или и нечетное число.

Пусть изоморфна .Тогда и делит . Поэтому содержит силовскую 2-подгруппу из и, используя информацию о подгруппах в , получаем, что делит , a делит или . Теперь делится на , которое делится на или на . Противоречие.

Пусть изоморфна . Так как имеет нечетный порядок, то силовская 2-подгруппа из содержится в . Если , то и по лемме 3.3 имеем . Если , то нормальна в , так как разрешимая группа с силовской 2-подгруппой имеет 2-длину 1. Итак, в любом случае . Но дважды транзитивна на смежных классах по , поэтому и нормальна в .

Поскольку и . Кроме того, , поэтому - нечетное число, делящее . Так как - циклическая группа нечетного порядка в , то либо делит , либо делит . Поэтому делится на , либо на . Очевидно, при . Случай исключается непосредственно. Следовательно, неизоморфна .

Предположим, что - нечетное и . Так как - стабилизатор точки и разрешима индекса , то , либо . Группа не допускает требуемой факторизации по лемме 9. Поэтому либо , либо . Теорема 1 доказана.

Доказательство теоремы 2 . Пусть - 2-нильпотентная группа и - ее силовская 2-подгруппа, - циклическая. Очевидно, мы можем считать, что . Пусть - максимальная в подгруппа, содержащая . Так как , то . Предположим, что . Тогда и группа непроста. Если порядок нечетен, то по индукции разрешима и , противоречие. Таким образом, , кроме того, максимальна в . Теперь - дважды транзитивна на множестве смежных классов по . Если порядок четен, то группа непроста по лемме 4.1. Пусть порядок нечетен. Тогда - силовская в подгруппа. По теореме Виландта-Кегеля , а по лемме 3.3 и 2-разложимая подгруппа. По теореме 1V.2.6 подгруппа неабелева. Так как из теоремы 1 в случае, когда порядок нечетен следует, что силовская 2-подгруппа в абелева, то имеем противоречие. Теорема доказана.

Симметрическая группа пяти символов факторизуется 2-нильпотентной подгруппой порядка 20 и циклической подгруппой порядка 6. Поэтому условие нечетности порядка циклического фактора существенно.

Заключение

В данной курсовой работе были приведены некоторые результаты, полученные Монаховым В. С. (Гомельская лаборатория института математики), проливающие свет на такие важные вопросы в теории конечных групп, как разрешимость и сверхразрешимость конечных групп, являющихся произведением двух групп с различными свойствами, а именно содержащих циклическую подгруппу индекса , содержащих циклические подгруппы индекса 2, разрешимые и циклические группы.

Эти полученные данные изложены в теоремах 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2 и 3.3. Так же представляют интерес данные изложенные в леммах, которые были использованы при доказательстве выше упомянутых теорем. В особенности следует выделить лемму 1.2, которая обобщает лемму А. В. Романоского и теорему 1.3, являющеюся обобщением теоремы Б. Хупперта.

Список использванных источников

1. Монахов В.С. О произведении двух групп, одна из которых содержит циклическую подгруппу индекса .// Математические заметки.-1974.-Т.16, №2-с. 285-295

2. Монахов В.С. Произведение разрешимой и циклической групп// Сб. VI всес. симпозиум по теории групп.-Киев: Наукова думка, 1980-с.189-195

3. Монахов В.С. О произведении двух групп с циклическими подгруппами индекса 2// Весцi АН Беларусi. сер. фiз.-мат. навук.-1996, №3-с.21-24

рефераты
РЕФЕРАТЫ © 2010