рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Позиционные звенья

ПОЗИЦИОННЫЕ ЗВЕНЬЯ

ВВЕДЕНИЕ

Позиционные звенья - это такие звенья , в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью y(t)=kg(t).Соответственно, переходная функция будет иметь вид

W(s)=k,

где N(s), L(s) - многочлены.

1. ИДЕАЛЬНОЕ УСИЛИТЕЛЬНОЕ (БЕЗЫНЕРЦИОННОЕ) ЗВЕНО

1. Данное звено описывается следующим уравнением:

aoy(t)=bog(t) (1)

Коэффициенты имеют следующие значения:

ao=2

bo=4

Запишем уравнение в стандартной форме. Для этого разделим (1) на ao:

y(t)=g(t)

y(t)=kg(t) (2),

где k=-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

y(t)=kg(t) (3)

2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Y(s)=kG(s)

W(s)=k (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда

h(t)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции:

w(t)==k(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:

k=2

h(t)=21(t)

w(t)=2(t)

Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=k

W(j)=k (7)

W(j)=U()+jV()

U()=k

V()=0

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A()=W(j)

A()=k (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

()=0 (9)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

L()=20lgk

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

A()=2

()=0

L()=20lg2

U()=2

V()=0

Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но беэынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.

2. УСИЛИТЕЛЬНОЕ ЗВЕНО С ЗАПАЗДЫВАНИЕМ

1. Данное звено описывается следующим уравнением:

aoy(t)=bog(t-) (1)

Коэффициенты имеют следующие значения:

ao=2

bo=4

=0,1с

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

y(t)= g(t-)

y(t)=kg(t-) (2),

где k=-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

y(t)=kg(t-) (3)

2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

g(t-)=G(s)e-s

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Y(s)=kG(s) e-s

W(s)= ke-s (4)

3. Найдем выражения для переходной функции и функции веса. ПО определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1.Тогда

h(t)=y(t)=k g(t-)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции:

w(t)==k(t-) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:

k=2

h(t)=21(t-)

w(t)=2(t-)

Переходная функция представляет собой ступенчатую функцию с шагом k=2 и запаздыванием на =0,1с, а функция веса - импульсную функцию с таким же запаздыванием, площадь которой равна k=2.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=k e-s

W(j)=k e-j =k(cos-jsin) (7)

W(j)=U()+jV()

U()=k cos

V()=-ksin

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A()=W(j)

A()=k (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

()= (9)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

L()=20lgk

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

A()=2

()=0,1

L()=20lg2

U()=2cos0,1

V()=-2sin0,1

3. УСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a1=1,24

ao=2

bo=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

+y(t)=g(t)

T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=-постоянная времени.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(T1 p+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

=sY(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

T1 sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)==

Переходя к оригиналу, получим

h(t)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)1

W(s)==

Переходя к оригиналу, получим

w(t)= e 1(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

k=2

T1 =0.62

h(t)=2 1(t)

w(t)=3.2e1(t)

Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=

W(j)= (7)

W(j)=U()+jV()==-j

U()=

V()=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.

A()=W(j)

A()== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

()=arctgk - arctg

()=-arctgT1 (9)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

L()=20lg

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

T1 =0.62

A()=

()=arctg0.62

L()=20lg

U()=

V()=

4. НЕУСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-ГО ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a1 - aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a1=1,24

ao=2

bo=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

-y(t)=g(t)

T -y(t)=kg(t) (2),

где k=-коэффициент передачи,

T=-постоянная времени.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(T p-1)y(t)=kg(t) (3)

2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

T sY(s)-Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)==

Переходя к оригиналу, получим

h(t)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)1

W(s)==

Переходя к оригиналу, получим

w(t)= e 1(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

k=2

T =0.62

h(t)=2 1(t)

w(t)=3.2e1(t)

Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=

W(j)= (7)

W(j)==j=U()+jV()

U()=

V()=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A()=W(j)

A()== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

()=arctgk - arctg

()=-arctg(-T) (9)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

L()=20lg

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

T =0.62

A()=

()=-arctg(-0.62)

L()=20lg

U()=

V()=

5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-ГО ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a2+a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=50,4

ao=120

bo=312

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

++y(t)=g(t)

+T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=,T22=-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:

T1=0,42

2T2=0,14

0,42>014, следовательно, данное уравнение - апериодическое.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(p2+T1 p+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

s2Y(s)+T1 sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)== ,

Где T3,4=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)=

=

Переходя к оригиналу, получим

h(t)=k1(t) =

k 1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)1==

Разложив на элементарные дроби правую часть этого выражения, получим

w(s)=

=

Переходя к оригиналу, получим

w(t)= =

= (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=

W(j)= (7)

Выделим вещественную и мнимую части :

W(j) ==

U()=

V()=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A()=W(j)

A()==..(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО

1. Данное звено описывается следующим уравнением:

a2+a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=0,504

ao=12

bo=31,20

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

++y(t)=g(t)

+T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=,T22=-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:

T1=0,042

2T2=0,14

0,042<014, следовательно, данное уравнение - колебательное.

Представим данное уравнение в следующем виде:

пусть T2=T, .

Тогда уравнение (2):

Здесь T - постоянная времени, - декремент затухания (0<<1).

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(p2+2Tp+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

s2Y(s)+2T sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)==

=

Заменим в этом выражении ,.Тогда

H(s)==

=

Переходя к оригиналу, получим

h(t)=k =

=k 1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)1===

=

Переходя к оригиналу, получим

w(t)= (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на j:

W(s)=

W(j)= (7)

Выделим вещественную и мнимую части :

W(j)=

U()=

V()

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A()=W(j)

A()== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

()=argW(j)

()=argk - arg(2Tj - T22+1)= - arctg

()= - arctg (9)

Для построения логарифмических частотных характеристик вычислим

L()=20lg A()

L()=20lg

рефераты
РЕФЕРАТЫ © 2010