рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Основы научного исследования и планирование экспериментов на транспорте

ОГЛАВЛЕНИЕ

  • ВВЕДЕНИЕ
  • ЗАДАНИЕ
  • ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА
  • ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ
  • УРАВНЕНИЕ РЕГРЕССИИ
  • РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ
  • ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ
  • ВЫВОД
  • ЛИТЕРАТУРА
ВВЕДЕНИЕ

Современный этап научных исследований характеризуется тем, что наряду с классическим натурным экспериментом все шире применяется вычислительный эксперимент, проводимый на математической модели с помощью ЭВМ. Проведение вычислительного эксперимента значительно дешевле и мобильнее, чем проведение аналогичного натурного, и в ряде случаев вычислительный эксперимент является единственным возможным инструментом исследователя.

Математический аппарат теории планирования и обработки результатов экспериментов в полной мере может быть применен как к натурным, так и к вычислительным экспериментам. В данной контрольно-курсовой работе под проводимым экспериментом будем понимать эксперимент на математической модели, выполненный при помощи ЭВМ.

Основная задача теории планирования и обработки результатов экспериментов - это построение статистической модели изучаемого процесса в виде Y = f(X1, X2,…Xk), где X - факторы, Y - функция отклика. Полученную функцию отклика можно использовать для оптимизации изучаемых процессов, то есть определять значения факторов, при которых явление или процесс будет протекать наиболее эффективно.

Объект исследования - одноцилиндровый четырехтактный дизельный двигатель ТМЗ-450Д.

Предмет исследования - процесс функционирования двигателя.

Цель исследования - анализ влияния одного из параметров двигателя на показатели его работы и получение соответствующей функциональной зависимости

ЗАДАНИЕ

Область планирования фактора X: Xmin = 0,012 м, Xmax = 0,055 м.

План проведения эксперимента:

№ опыта

xj

1

-1

2

-0,8

3

-0,6

4

-0,4

5

-0,2

6

0

7

0,2

8

0,4

9

0,6

10

0,8

11

1

Используя приведенные исходные данные и программу расчета функционирования двигателя, проанализировать влияние радиуса кривошипа (X) на величину максимальной температуры (Y) рабочего тела в цилиндре двигателя. Получить функциональные зависимости между указанными величинами.

ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА

Используя указанный в задании план проведения эксперимента в кодовом виде, а также область планирования фактора Х (Хmin, Хmax), подготовим план проведения данного однофакторного эксперимента.

; ;

; ;

; ;

; ;

; ;

; ;

; ;

; ;

.

где - интервал (шаг) варьирования фактора;

- натуральное значение основного уровня фактора;

- кодированное значение фактора x;

- натуральное значение фактора в j-ом опыте, где j = 1, 2,…, N; N - число опытов.

В дальнейших расчетах будем использовать только натуральные значения факторов и функции отклика.

ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ

Используя выданную преподавателем программу расчета (математическую модель) проведем на ЭВМ необходимое количество опытов N. Полученные результаты представим в виде таблицы 1.

Табл. 1

№ опыта

Xj

Yj

1

0,012

3601,8348

2

0,0163

2712,4310

3

0,0206

2195,4343

4

0,0249

1855,3637

5

0,0292

1626,8644

6

0,0335

1461,2450

7

0,0378

1339,577

8

0,0421

1250,5135

9

0,0464

1173,9877

10

0,0507

1126,4606

11

0,055

1092,5573

УРАВНЕНИЕ РЕГРЕССИИ

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0 + a1X) и квадратичную зависимости (Y = a0 + a1X + a2X2). Посредством МНК значения a0, a1 и a2 найдем из условия минимизации суммы квадратов отклонений измеренных значений отклика Yj от получаемых с помощью регрессионной модели, т. е. путем минимизации суммы:

.

Проведем минимизацию суммы квадратов с помощью дифференциального исчисления, путем приравнивания к 0 первых частных производных по a0, a1 и a2.

Рассмотрим реализацию метода наименьших квадратов применительно к уравнению вида Y = a0 + a1X. Получим:

;

.

Выполнив ряд преобразований, получим систему нормальных уравнений метода наименьших квадратов:

Решая эту систему, найдем коэффициенты a1 и a0:

; .

Для квадратичной зависимости Y = a0 + a1X + a2X2 система нормальных уравнений имеет вид:

Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 2.

Табл. 2

№ опыта

Xj

Yj

Xj2

Xj Yj

Xj2Yj

Xj3

Xj4

1

0,012

3601,8348

0,000144

43,222017

0,5186642

0,0000017

0,000000020736

2

0,0163

2712,4310

0,0002656

44,212625

0,7204216

0,0000043

0,0000000705433

3

0,0206

2195,4343

0,0004243

45,225946

0,9315227

0,0000087

0,0000001800304

4

0,0249

1855,3637

0,00062

46,198556

1,1503254

0,0000154

0,0000003844

5

0,0292

1626,8644

0,0008526

47,50444

1,3870645

0,0000248

0,0000007269267

6

0,0335

1461,2450

0,0011222

48,951707

1,6398091

0,0000375

0,0000012593328

7

0,0378

1339,577

0,0014288

50,63601

1,9139876

0,000054

0,0000020414694

8

0,0421

1250,5135

0,0017724

52,646618

2,2164101

0,0000746

0,0000031414017

9

0,0464

1173,9877

0,0021529

54,473029

2,52747781

0,0000998

0,0000046349784

10

0,0507

1126,4606

0,0025704

57,111552

2,8954543

0,0001303

0,0000066069561

11

0,055

1092,5573

0,003025

60,090651

3,3049858

0,0001663

0,000009150625

?

0,3685

19436,266

0,0143782

550,27311

19,206122

0,0006174

0,0000282173998

Для уравнения регрессии вида Y = a0 + a1X найдем коэффициенты a1 и a0:

.

.

Для уравнения регрессии вида Y = a0 + a1X + a2X2 найдем коэффициенты a1 , a2 и a0:

Решим систему нормальных уравнений способом Крамера:

.

.

.

Найдем определитель (det) матрицы:

.

; ; .

; ; .

РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ

Построим графики функций Y = a0 + a1X ; Y = a0 + a1X + a2X2 :

X

0,012

0,0163

0,0206

0,0249

0,0292

0,0335

0,0378

0,0421

0,0464

0,0507

0,055

Y=ao+a1X

2833,143

2619,9

2406,658

2193,415

1980,172

1766,929

1553,686

1340,443

1127,2

913,9573

700,7144

Y=a0+a1X+a2 X2

3215,923

2748,207

2330,714

1963,444

1646,397

1379,574

1162,973

996,5962

880,4424

814,5117

798,8043

ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ

Для проверки адекватности модели определим абсолютные Yj и относительные погрешности в каждом из опытов.

Yj = - Yj; ,

где - расчетное значение функции (отклика) в j-ой точке.

Данные представим в виде таблицы 3.

Табл. 3

j

Y = a0 + a1X

Y = a0 + a1X + a2X2

Yj

Yj

1

-768,6918

-0,21342

-385,9118

-0,10714

2

-92,531

-0,03411

35,776

0,01319

3

211,2237

0,09621

135,2797

0,06162

4

338,0513

0,1822

108,0803

0,05825

5

353,3076

0,21717

19,5326

0,012

6

305,684

0,20919

-81,671

-0,05589

7

214,109

0,15983

-176,604

-0,13183

8

89,9295

0,07191

-253,9173

-0,20305

9

-46,7877

-0,0398

-293,5453

-0,25004

10

-212,5033

-0,1886

-311,9489

-0,27693

11

-391,8429

-0,35865

-293,753

-0,26887

Просматривая значения этих погрешностей, исследователь может легко понять, какова погрешность предсказания в точках, где проводились опыты, устраивают его или нет подобные ошибки. Таким образом, путем сопоставления фактических значений отклика с предсказанными по уравнению регрессии можно получить достаточно надежное свидетельство о точностных характеристиках модели.

С помощью анализа работоспособности регрессионной модели выясним практическую возможность ее использования для решения какой-либо задачи. Это анализ будем проводить, вычисляя коэффициент детерминации (квадрат корреляционного отношения). Коэффициент детерминации R2 вычисляется по формуле:

где - общее среднее значение функции отклика.

.

Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 4.

Табл. 4

Y = a0 + a1X

Y = a0 + a1X + a2X2

j

1

3366863,62479

1136803,18835

1952571,23764

2

893965,95743

727552,24249

853898,13319

3

183613,13271

409247,73017

312848,71152

4

7819,94095

181886,66602

37616,467

5

19619,28834

45470,75597

14328,99238

6

93445,31841

0,00002

147047,20405

7

182633,3815

45474,39816

359786,00774

8

266689,37885

181893,9504

589419,20142

9

351584,44898

409258,65674

602866,06259

10

410205,24101

727568,0054

801506,847

11

454782,94891

1136822,67874

759273,70255

?

6231222,66188

5001978,27246

5732724,84892

Для уравнения регрессии Y = a0 + a1X:

Для уравнения регрессии Y = a0 + a1X + a2X2:

Т.к. в уравнениях регрессии оба уравнения принято считать работоспособными. В уравнении регрессии вида Y = a0 + a1X + a2X2

, а в уравнении регрессии вида Y = a0 + a1X . Из этого следует, что в уравнении вида Y = a0 + a1X + a2X2 найденное значение регрессии лучше объясняет вариацию в значениях Y (N >> (d+1)), чем в уравнении вида Y = a0 + a1X.

ВЫВОД

В процессе выполнения контрольно-курсовой работы мы научились:

- разрабатывать план проведения вычислительного эксперимента;

- проводить вычислительный эксперимент на ЭВМ и накапливать статистическую информацию;

- обрабатывать полученные статистические данные с помощью регрессионного анализа и получать формульные зависимости, связывающие значение выходной переменной (отклика) объекта с входными переменными (факторами);

- графически представлять и анализировать полученные результаты (проверять адекватность и работоспособность регрессионной модели);

- вычислять коэффициент детерминации (квадрат корреляционного отношения) и анализировать полученные результаты.

ЛИТЕРАТУРА

1. Гурман В.Е. Теория вероятностей и математическая статистика. - М.: Высшая школа, 1972.

2.Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. - Минск, 1982.

3.Румшинский Л.З. Математическая обработка результатов эксперимента. Справочное руководство. - М.: Наука, 1971.

рефераты
РЕФЕРАТЫ © 2010