рефератырефератырефератырефератырефератырефератырефератырефераты

рефераты, скачать реферат, современные рефераты, реферат на тему, рефераты бесплатно, банк рефератов, реферат культура, виды рефератов, бесплатные рефераты, экономический реферат

"САМЫЙ БОЛЬШОЙ БАНК РЕФЕРАТОВ"

Портал Рефератов

рефераты
рефераты
рефераты

Элементарные частицы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Брянский государственный технический университет

Кафедра «Общая физика»

КУРСОВАЯ РАБОТА

по дисциплине «Физика»

на тему: «Элементарные частицы»

Выполнил студент гр. 09-ЭУП

И.Н. Соколова

Руководитель

О.В. Щербакова

Брянск 2010

содержание

  • Введение. 3
  • Глава 1. Основные характеристики элементарных частиц ...4
    • 1.1 Краткая историческая справка 4
    • 1.2 Классификация элементарных частиц 5
    • 1.3 Состав атомных ядер 8
  • глава 2. Общие положения об элементарных частицах 12
    • 2.1 Свойства элементарных частиц 12
    • 2.2 Кварки и лептоны 18
  • Глава 3. Способы, регистрация и исследования элементарных частиц 24
    • 3.1 Радиоактивность, цепные реакции 24
    • 3.2 Методы наблюдения элементарных частиц 31
    • 3.3 Великое объединение 34
  • Заключение 39
  • Список используемой литературы 41
Введение

Данная тема весьма интересна, так как она рассказывает из каких частиц состоит материя.

Понятие «элементарная частица» сформировалось в связи с установлением строения вещества на микроскопическом уровне. Обнаружение в начале 20-го века мельчайших носителей свойств вещества - атомов - позволило описать все известные вещества как комбинации конечного, хотя и достаточно большого, количества составляющих - атомов.

Выявления сложного строения атомов, оказавшихся построенными всего из трёх типов частиц (электронов и протонов и нейтронов в ядре), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи заканчивается дискретными бесструктурными образованиями - элементарными частицами. Нельзя с уверенностью сказать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, долгое время считавшиеся элементарными, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Есть гипотеза о том, что существуют так называемые «геометрические кванты». Её смысл заключается в том, что на расстоянии 10Піі см силы взаимодействия настолько велики, что само пространство сворачивается в некие микрообъекты, напоминая губку, и меньших расстояний попросту не бывает. Эти шарики и представляют собой «геометрические кванты», или струны.

Сейчас термин «элементарные частицы» используется в не совсем точном значении, а включает в себя группу мельчайших частиц, не являющихся атомами или атомными ядрами (исключение составляет протон - ядро атома водорода).

глава 1. Основные характеристики элементарных частиц

1.1 Краткая историческая справка

Первая элементарная частица - электрон - была открыта Дж. Дж. Томсоном в 1897 году. Он установил, что так называемые катодные лучи образованы потоком мельчайших частиц, названных впоследствии электронами. В 1911 году Э.Резерфорд, пропуская б-частицы от естественного радиоактивного источника через тонкие фольги из разных веществ, выяснил, что положительный заряд в атомах сосредоточен в компактных образованиях - ядрах. В 1919 году обнаружил протоны - положительно заряженные частицы, с массой, в 1836,2 раза превышающей массу электрона - среди частиц, выбитых из атомных ядер. В 1932 году Дж. Чедвик открыл третью частицу, входящую в состав атома - нейтрон, изучая взаимодействия б-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не имеет заряда. М.Планк, предположив, что энергия абсолютно чёрного тела квантована, получил правильную формулу для спектра излучения (1900 год). Развивая идею Планка, Эйнштейн постулировал, что электромагнитное излучение в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона даны Р.Милликеном (1912-1915 года) и А.Комптоном (1922 год).

Открытие нейтрино - частицы, почти не взаимодействующей с веществом - ведёт своё начало от гипотезы В.Паули(1930 год), позволившей найти «невидимого вора» в процессах в-распада радиоактивных ядер (часть энергии исчезала неизвестно куда). Экспериментально существование нейтрино было подтверждено лишь в 1953 году Ф. Райнесом и К.Коуэном в США.

К настоящему времени открыто около 350 элементарных частиц, различных по своим характеристикам: времени жизни, заряду, массе, спину и т.д.

1.2 Классификация элементарных частиц

Под элементарными частицами понимают такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединение других частиц. Во всех наблюдавшихся до сих пор явлениях каждая такая частица ведет себя как единое целое. Элементарные частицы могут превращаться друг в друга.

Все частицы (в том числе неэлементарные и квазичастицы) делятся на бозоны (или бозе-частицы) и фермионы (или ферми-частицы). Бозонами называются частицы или квазичастицы, обладающие нулевым или целым спином. Бозоны подчиняются статистике Бозе-Эйнштейна (отсюда и происходит их название). К бозонам относятся: гипотетический гравитон (спин 2), фотон (спин 1), промежуточные векторные бозоны (спин 1), глюоны (спин 1), мезоны и мезонные резонансы, а также античастицы всех перечисленных частиц. Фермионами называются частицы или квазичастицы с полуцелым спином. Для них справедлив принцип Паули и они подчиняются статистике Ферми-Дирака. К фермионам относятся лептоны, барионы, барионные резонансы и кварки (спин Ѕ), а также соответствующие античастицы.

По времени жизни ф различают стабильные, квазистабильные и резонансные частицы или резонансы. Резонансными называют частицы, распадающиеся за счёт сильного взаимодействия со временем жизни 10ПІі с. Нестабильные частицы, время жизни которых превышает 10ПІє с, распадаются за счёт слабого или электромагнитного, но не за счёт сильного взаимодействия. Такие частицы называются квазистационарными. Время 10ПІє с, ничтожное в обыденных масштабах, должно считаться большим, если его сравнивать с ядерным временем. Ядерное время - это время, которое требуется свету, чтобы пройти диаметр ядра (10П№і см). За время 10 ПІє с может совершиться много внутринуклонных процессов, поэтому частицы, названные здесь квазистабильными, в справочниках именуются просто стабильными. Впрочем, абсолютно стабильными пока можно считать только 12 частиц: фотон г, электрон e-, протон p+(?), электронное нe, мюоннное нм и таоннное нф нейтрино и соответствующие им античастицы - их распад на опыте не зарегистрирован.

В микромире каждой частице соответствует античастица. В некоторых случаях частица полностью тождественна со своей античастицей. В таком случае частицу называют истинно нейтральной. К ним относятся фотон г, р0-мезон, з0-мезон, J? ш-мезон, ипсилон-частица . Если же частица и античастица не совпадают, то массы, спины, изотопические спины, времена жизни у частицы и античастицы одинаковы, а прочие характеристики одинаковы по абсолютной величине, но противоположны по знаку. Так, электрон и протон отличаются от позитрона и антипротона прежде всего знаком электрического заряда. Нейтрон и антинейтрон различаются знаком магнитного момента. Лептонные заряды у лептонов и атилептонов, барионные у барионов и антибарионов различаются по знаку.

Понятия частицы и античастицы относительно. С тем же успехом учёные могли назвать позитрон - частицей, а электрон - античастицей. Но электроны преобладают в нашей Вселенной, а позитроны являются экзотическими объектами, поэтому и названы так, как названы. Что называть частицей, а что античастицей - лишь вопрос соглашения.

Также существует деление частиц на фотоны, лептоны и адроны. Адроны - большой класс элементарных частиц, участвуют во всех видах взаимодействий. В зависимости от значения спина, адроны, в свою очередь, делятся на мезоны и барионы. Мезоны - частицы с нулевым спином, барионы - со спином 1/2(у омега-гиперона - 3/2). Лептоны - частицы, участвующие в слабом и электромагнитном взаимодействиях. Спин лептонов равен 1/2.

В настоящее время известны четыре вида взаимодействий между элементарными частицами: сильное, электромагнитное, слабое и гравитационное ( в порядке убывания интенсивности).

Сильное взаимодействие. Этот вид взаимодействия называют иначе ядерным, так как оно обеспечивает связь нуклонов в ядре. Интенсивность взаимодействия принято характеризовать безразмерной константой взаимодействия G2. Эта же константа характеризует вероятность процессов, обусловленных данным взаимодействием. Наибольшее расстояние, на котором проявляется сильное взаимодействие (радиус действия r) составляет примерно 10 -13 см. Частица, пролетающая со скоростью, близкой к с, в непосредственной близости к другой частице, будет взаимодействовать с ней в течение времени t = 10-23 сек. В соответствии с этим говорят, что сильное взаимодействие характеризуется временем взаимодействия ts порядка 10-23 сек.

Электромагнитное взаимодействие. Радиус действия электромагнитного взаимодействия не ограничен. Константа взаимодействия равна 1\137. Следовательно, интенсивность электромагнитного взаимодействия примерно в 100 раз меньше, чем сильного. Время, необходимое для того, чтобы проявилось взаимодействие, обратно пропорционально его интенсивности (или вероятности). Поэтому, для электромагнитного взаимодействия t = 10-21 сек.

Слабое взаимодействие. Слабое или распадное взаимодействие ответственно за все виды в-распадов ядер, за многие распады элементарных частиц, а также за все процессы взаимодействия нейтрино с веществом. Слабое взаимодействие, как и сильное, является краткодействующим. Константа взаимодействия равна 10-14. Время взаимодействия t = 10-9.

Гравитационное взаимодействие. Радиус действия не ограничен. Константа взаимодействия мала: 10-39. Соответственно, время взаимодействия t = 109. Гравитационное взаимодействие является универсальным, ему подвержены все элементарные частицы. Но в процессах микромира гравитационное взаимодействие ощутимой роли не играет.

1.3 Состав атомных ядер

Атомное ядро состоит из протонов и нейтронов. Нейтрон может самопроизвольно превращаться в протон, а также в электрон и нейтрино. Во многих ядрах наблюдается и обратный процесс. Так как протон переходит в нейтрон, а нейтрон в протон, то это значит, что обе частицы одинаково простые. Способность частиц к взаимным превращениям указывает на сложность их внутреннего строения.

Нейтрон, как и протон, обладает свойствами магнетика. Это означает, что в нейтроне содержатся электрические заряды, так как в целом нейтрон не заряжен, то алгебраическая сумма положительного и отрицательного заряда равна нулю. Но если заряды двух знаков расположены на разных расстояниях от оси вращения, то магнитные поля, создаваемые их движением. Компенсироваться не будут, т. е. нейтрон будет намагничен.

На первый взгляд кажется, что, помимо нейтронов и протонной, ядра должны содержать также позитроны и электроны, т. к. многие ядра радиоактивных изотопов излучают эти частицы. Но детальный анализ показал, что в ядре отсутствуют и электроны, и позитроны. Но если позитроны и электроны в готовом виде в ядре не присутствуют, то в процессе распада ядра, сопровождающегося вылетом одной из этих частиц, они образуются заново за счёт превращений внутри ядра. При этом при вылете позитрона (положительного заряда) один из протонов превращается в нейтрон, а при вылете электрона (отрицательного заряда), наоборот, один из нейтронов делается протоном.

Устойчивые (нерадиоактивные) лёгкие ядра содержат примерно равные количества протонов и нейтронов. В тяжёлых ядрах имеется некоторый перевес в числе нейтронов; так, в ядре свинца нейтронов примерно в полтора раза больше, чем протонов. Соотношение чисел нейтронов и протонов, которое осуществляется в устойчивых ядрах, является наиболее выгодным, придающим ядру особую прочность. Отступления от этого соотношения делают ядро неустойчивым.

Ядерные силы - особые силы, действующие между частицами, образующими атомные ядра (нейтронами и протонами). Опыты привели к заключению, что ядерные силы взаимодействия между парами частиц протон-протон, нейтрон-протон, нейтрон-нейтрон одинаковы. В явлениях, зависящих только от ядерных сил, нейтрон и протон ведут себя подобно. Эти две частицы объединяют общим термином нуклон.

Наиболее характерной особенностью ядерных сил является короткодействие - они достигают очень большой величины при сближении нуклонов на расстояние порядка 10-13 см, но при увеличении этого расстояния всего в несколько раз так сильно спадают, что ими можно пренебречь.

На малых расстояниях ядерное взаимодействие приблизительно на два порядка сильнее электрического. При больших расстояниях положение обратное: ядерное взаимодействие протонов ничтожно слабо по сравнению с электрическим.

Нуклон создаёт в окружающем пространстве поле ядерных сил, и это поле действует на другие нуклоны, попадающие в сферу его влияния. В 1935 г. японский физик Х. Юкава предположил, что подобно электромагнитному полю ядерное поле бывает не только связанным, но и свободным, т. е. существуют кванты ядерного поля. Он показал, что малый радиус действия ядерного поля связан с тем, что кванты этого поля обладают отличной от нуля массой покоя. Чем больше масса покоя, тем меньше сфера действия сил. Позже, при исследовании космических лучей были открыты частицы, названные пи-мезонами, которые и являются квантами ядерного поля.

Основные характеристики элементарных частиц: масса, электронный и барионный заряд, время жизни и их античастицы, а также систематика частиц представлены в таблице.

Класс частиц

Частицы

Символ

Барионный заряд

Эл. заряд

Масса

Время жизни

Анти-частица

Символ

Фотон

фотон

г

0

0

0

стабилен

-

-

Лептоны

электрон

e-

0

-1

1

стабилен

позитрон

e+

мюон

м-

0

-1

207

2,2*10-6

мю-плюс-мезон

м+

электронный нейтрино

нe

0

0

0

стабилен

электронный антинейтрино

нe

мюонный нейтрино

нм

0

0

0

стабилен

мю-антинейтрино

нм

Адроны (мезоны)

пи-нуль

р0

0

0

264

10-16

-

-

пи-плюс

р+

0

1

273

2,6*10-8

пи-минус

р-

эта-мезон

з

0

0

1070

2,5*10-19

-

-

ка-плюс

К+

0

1

966

1,2*10-8

ка-минус

K-

кА-нуль короткоживущий

K0s

0

0

974

0,9*10-10

кА-нуль долгоживущий

K0L

0

0

974

5,7*10-8

Адроны (барионы)

протон

p

1

1

1836

стабилен

антипротон

p

нейтрон

n

1

0

1838,6

103

антинейтрон

n

лямбда

Л

1

0

2183

2,5*10-10

антилямбда

Л

сигма-плюс

У+

1

1

2328

0,8*10-10

антисигма-минус

У-

сигма-нуль

У0

1

0

2334

10-14

антисигма-нуль

У0

сигма-минус

У-

1

-1

2343

1,6*10-10

антисигма-плюс

У+

кси-нуль

О0

1

0

2573

3*10-10

антикси-нуль

О0

кси-минус

О-

1

-1

2586

1,7*10-10

кси-плюс

О+

омега-минус

Щ-

1

-1

3277

1,5*10-10

омега-плюс

Щ+

глава 2. общие положения об элементарных частицах

2.1 Свойства элементарных частиц

Для того, чтобы понять, что навело учёных на мысль о том, что адроны состоят из кварков, нужно сначала понять, что связывает протоны и нейтроны в ядро атома., пройти вместе с ними их путь в недра материи.

Когда заряженные частицы взаимодействуют друг с другом, они как бы играют в бадминтон - обмениваются «воланчиком» - фотоном. Одна частица испускает фотон, а вторая ловит и отбрасывает назад. Чем ближе частицы друг к другу, тем сильнее взаимодействие, тем быстрее идёт игра. Фотон мелькает так быстро, что между частицами протягивается что-то вроде ремня, только очень тонкого и не сплошного, но это неважно - ведь и обычный ремень в основном состоит из пустоты. Но нейтрон в такой «бадминтон» не играет - он электрически нейтрален, и «воланчик» попросту не замечает.

Исследуя реакции по испусканию ядром электрона, физики нашли таинственную пропажу энергии - суммарная энергия ядра и электрона после реакции всегда оказывалась чуточку меньше, чем энергия ещё не распавшегося ядра. Это приводило к выбору: признать, что закон сохранения энергии неверен, или допустить существование неизвестной частицы, не имеющей заряда и уносящий часть энергии. Гипотезу о существовании такой частицы высказал Вольфганг Паули. Эту частицу назвали нейтрино (в переводе с итальянского - нейтрончик).

Основываясь на этой гипотезе, Д.Д.Иваненко и И.Е.Тамм предположили, что частицы в ядре обмениваются не только фотонами, но и парами частиц - позитроном и нейтрино или электроном и нейтрино. Испустив позитрон и нейтрино, протон становится нейтроном, а, поглотив их, нейтрон становится протоном. Возникает вопрос - почему нуклоны обмениваются двумя частицами, а не одной, например? Оказывается, этого невозможно. Частицы постоянно вращаются вокруг своей оси. Вращение их одинаково, различие лишь в его направлении - справа налево или слева направо. Отрываясь от протона или нейтрона, одна частица унесёт с собой их вращение, а невращающихся нуклонов не существует. А если испускается пара частиц, они могут вращаться в противоположных направлениях, и в сумме пара никакого вращения не уносит.

Эта теория на некоторое время стала главным событием физики, но более точные расчёты показали, что испускание двух частиц происходит слишком редко, и образуемых ими связей недостаточно, чтобы скрепить ядро.

Тем не менее, способ объяснить внутриядерные силы «бадминтоном» каких-то частиц выглядел очень заманчивым. Молодой японский теоретик Хидеки Юкава пошёл по этому пути и решил принять на веру то, что протоны и нейтроны обмениваются какой-то неизвестной доселе частицей, и установить её свойства. Вышло, что эта частица должна быть в 200-300 раз тяжелее электрона и частота испускания-поглощения её в тысячу раз больше, чем для фотона. Как будто вместо лёгкого воланчика-фотона игроки-нуклоны использовали в своём «бадминтоне» тяжёлый валун, к тому же перебрасываясь им с огромной скоростью.

Частица, с массой в 200 раз больше электронной, была обнаружена в космических лучах и названа мезоном от греческого «мезо» - средний. Средний между электроном и протоном.

Когда протон находится рядом с другим протоном, они играют в мезонный «бадминтон». Если же протон одинок, то он «играет» сам с собой - испускает р-мезон и тут же поглощает его обратно и так далее - как жонглёр в цирке. Время акта испускания и поглощения очень мало, но из-за многократного повторения возникает размазка заряда и массы в пространстве. Образно говоря, нуклон мигает - вспыхнет «мезонным светом» и тут же погаснет, и так без конца. Испустив р+-мезон, протон становится нейтроном, а нейтрон при испускании р--мезона становится протоном. При испускании р0-мезона протон и нейтрон остаются сами собой. Во всех случаях р-мезон входит в состав нуклона.

Сам р-мезон тоже окружает себя «шубкой» из элементарных частиц. Он на короткое время испускает пару р-мезонов. Почему именно пару, а не один мезон - сложный вопрос, связанный с особенностями этой частицы. Главное, что р-мезон состоит из частей, которые не отличаются от целого! Мезон состоит из мезонов! Всё равно, что если бы из гнезда вылетала не птица, а точно такое же гнездо! Более того, р-мезон может на короткое время превратиться в нуклон и антинуклон. Например, р+-мезон в протон и антинейтрон, а р0-мезон - в протон и антипротон.

Сегодня известно, что все частицы содержат в себе много разных типов лёгких и тяжёлых частиц. Более лёгкие частицы могут удалиться на достаточно большое расстояние, пока не будут поглощены обратно. Более тяжёлые, наоборот, жмутся к центру. Поэтому центральная часть любой частицы (керн) более тяжелая, чем периферия, окраина.

Все элементарные частицы одеты в «шубу» из рождающихся и быстро исчезающих частиц. Даже фотоны и нейтрино имеют свои «шубы» - вокруг них рождаются электроны и позитроны, правда это происходит весьма редко.

Элементарные частицы состоят из элементарных частиц…Получается сеть, в которой все частицы являются простыми и сложными одновременно. Природа устроена хитрее и изобретательнее любой человеческой фантазии. Но как быть с законами сохранения энергии и массы? Ведь если протон оторвал о себя увесистый кусочек в виде р-мезона и остался протоном. Откуда тогда взялся материал для р-мезона?

Противоречие налицо, особенно при превращении р-мезона в нуклон и антинуклон. В этом случае части весят в 14 раз больше целого!

Оказывается, эффект давления жидкости снизу на тело присутствует и внутри частиц. Только место воды там занимает энергия. «Куски» частицы погружены в силовое поле взаимодействия - своеобразную энергетическую ванну, и их масса уменьшается. Энергия в нуклоне имеет отрицательный знак, потому что для растаскивания притягивающихся друг к другу частей требуется трата энергии. Энергетическая «ванна» есть и в атоме. В неё «налита» энергия электромагнитного взаимодействия электронов с ядром. Оно в тысячи раз слабее сил, действующих внутри самих элементарных частиц и поэтому плотность энергии во внутриатомной «ванне» очень мала. Электроны теряют в весе столько же, сколько и люди в атмосфере.

Потеря веса внутри ядра составляет уже проценты, а внутри элементарной частицы она настолько велика, что они как бы растворяются в энергии взаимодействия. На связь частей уходит значительная часть общей энергии и массы. В этом главное отличие элементарной частицы от всех других микрочастиц. Современную физику недостаточно просто выучить, к ней надо привыкнуть! Но с «лестницей», ведущей в недра материи, творится что-то странное: атомы расположены глубже молекул, ядра глубже атомов, а вот в протоне творится что-то невообразимое. Ступеньки громоздятся друг на друга и уже не так легко понять, спускаемся ли мы вниз или топчемся на месте. Когда задача становится слишком сложной и запутанной, полезно взглянуть на неё с другой стороны. Забудем, что протон элементарный, попробуем просветить его какими-либо лучами.

Далее путём электронного «просвечивания» удалось увидеть протон ближе. Он выглядит примерно как планета с массивным ядром и протяжённой атмосферой. Радиус протонного керна всего лишь в несколько раз меньше размеров его мезонной «шубы». Можно было ожидать, что нейтрон имеет аналогичное строение. Простая модель испускания-поглощения мезона подсказывает, что окраинные области у протона и нейтрона отличаются лишь знаком заряда. Опыт неожиданно показал совсем другое - радиус облака электрических зарядов у нейтрона оказался равным нулю! Иными словами, в нейтроне есть что-то, что нейтрализует заряд мезонного облака или модель «жонглирования» неверна, и тогда наше представление о строении элементарных частиц несправедливы, и физикам придётся начинать всё заново. Было от чего прийти в волнение! Учёные собирали конгрессы, пытались сообща понять, в чём тут дело. Пытались понять это и мы в Дубне. Непонятно, почему происходит нейтрализация облаков, но прежде надо удостовериться, что эти облака существуют. Это можно установить, поместив нейтрон в сильное электрическое поле. Тогда все положительные заряды сместятся в одну сторону, а отрицательные - в другую. Нейтрон превратится из шарика в гантель, что скажется на его взаимодействиях с атомными ядрами. Заметить растяжение нейтрона на опыте так и не удалось, помешали побочные эффекты.

Разгадка этого явления пришла после открытия тяжёлых мезонов С и Щ. Выяснилось, что р-мезоны при определённых условиях могут «слипаться» и превращаться в короткоживущие частицы. Это и были С- и Щ-мезоны. Из таких «слипающихся» и снова разваливающихся частиц и состоит «шуба» нуклона. В протоне условия благоприятствуют образованию заряженных «капель», а в нейтроне - нейтральных, поэтому электроны и не чувствуют мезонной оболочки нейтрона. Чтобы её обнаружить, нужно просвечивать нейтрон пучком жёстких протонов. Во всех взаимодействиях нейтрон ведёт себя, как частица с «размазанной» в пространстве массой и равным нулю радиусом распространения электрических зарядов.

Но всё это не упростило картину строения нуклонов, а только усложнило её. Если бы протон представлял собой монолитную единую картину, то согласно третьему закону Ньютона величина импульса столкнувшегося и отскочившего от протона электрона дала бы сведения о движении протона как целого. В опытах с рассеиванием очень жёстких электронов получилось иначе - вместо чёткой точки на экранах получилось размытое пятно. Американский физик Р.Фейнман первым понял, в чём тут дело. Используя аналогию с радиолокацией, где разваливающаяся на куски ракета или самолёт предстают на экране радара расплывчатым пятном, Фейнман предположил, что нуклоны состоят из мелких частичек. Из них состоит его керн и мезонное облако. Эти частицы он назвал партонами - от английского слова part - часть. Теперь можно спросить, что же такое нуклон - керн, одетый в мезонную «шубу», или комочек мелкозернистой партонной «икры»? Объекты микромира, их необычную сущность, нельзя объяснить одной картиной - они слишком сложны для этого. Наглядное представление о нуклоне - это набор отдельных картинок.

Также и обилие открытых и вновь открываемых адронов и резонансов навело учёных на мысль об их сложном строении. Гелл-Манн и Цвейг, независимо друг от друга предположили, что все адроны состоят из более фундаментальных частиц, названных Гелл-Манном кварками. Цвейг предложил назвать кварки тузами, Фейнман - партонами, но эти названия не прижились. О происхождении названия «кварк» у физиков в ходу две легенды. По одной из них, оно появилось, как шутка - в немецком языке слово «кварк» означает одновременно «творог», «протоплазма» и «чепуха». Поначалу теоретики с юмором относились к сделанному открытию. Согласно другой легенде, название новой элементарной частицы взято из романа Джойса «Поминки по Финнигану», где в бредовом сне героя летящие за кораблём чайки выкрикивают человеческими голосами фразу: «Три кварка для мистера Марка».

Поначалу многие учёные считали кварки курьёзом, временными «строительными лесами» новой, более совершенной теории. Но не успели они оглянуться, как оказалось, что с помощью кварков просто и наглядно объясняются различные экспериментальные факты, а теоретические вычисления сильно упрощаются.

В целом, картина строения материи стала приобретать более привычные черты - нуклоны состоят из кварков, большее из меньшего, и ступеньки воображаемой лестницы вновь выпрямились и пошли вниз.

Кварки обладают несколькими выдающимися особенностями. Их заряд равен -? и +? электронного, а в природе до этого не находили частицы с дробным зарядом. Также у кварков есть цвет и аромат. Аромат - это просто способ различать шесть кварков. Сначала хотели их просто пронумеровать, но решили, что нельзя назвать один кварк первым, а другой - последним, и ввели понятие аромата. Конечно же, понюхать кварк нельзя, это лишь удобный и необычный термин, такой, как странность, очарование или прелесть. Физики любят использовать необычные, а потому легко запоминающиеся названия.

Цвет кварка - это его своеобразный заряд. Испуская или поглощая глюон, кварк меняет свой цвет. Глюоны, подобно пчёлам, снуют между кварками, перенося цвет. В зависимости от того, сколько и какой «пыльцы» унёс глюон, кварк приобретает определённый цвет. Кварковый заряд - цвет - во многом похож на электрический. Он также может быть большим или маленьким, положительным или отрицательным (тогда говорят, что цвет сменился антицветом). Но есть и отличие. Как бы не изменялся электрический заряд, он всегда остаётся зарядом, а цветовой заряд может изменить свой цвет.

С открытием цвета микромир стал ярче и разнообразнее, но кварков стало уже 18. Слишком уж сложной стала «самая элементарная частица». Возможно, в недрах микромира от нас скрыто ещё что-то очень важное…

2.2 Кварки и лептоны

К настоящему времени установлено существование пяти ароматов кварков: u, d, s, c, b. Неоднократно поступали сообщения о об открытии t-кварка , но окончательно его существование не установлено. Массы кварков: mu = 5 МэВ, md = МэВ, ms = 150 МэВ, mc = 1,3 ГэВ, mb = 5 ГэВ, mt= > 22 ГэВ. Эти данные - оценочные и грубо ориентировочные, так как кварки в свободном состоянии не наблюдались и их нельзя было исследовать прямыми методами.

Все кварки имеют спин 1/2 и барионный заряд ?. Кварки u, с, t, называют верхними, так как они имеют заряд +?, а остальные кварки u, s, b с электрическим зарядом -? - нижними. Кварк s является носителем странности, с - очарования, b - красоты (прелести). Странность была обнаружена в 1953 году при открытии К-мезонов и гиперонов. Они рождались за счёт сильных взаимодействий с характерным временем порядка 10-23 с, а времена жизни оказались порядка 10-8-10-10с. Было совершенно непонятно, почему они живут так долго, почему не распадаются за счёт сильного взаимодействия, в результате которого они возникают? Дальнейшие исследования показали, что странные частицы рождаются парами. Это навело на мысль, что сильные взаимодействия не могут играть роли в распаде частиц из-за того, что для их проявления необходимо присутствие двух странных частиц. По той же причине запрещено рождение одиночных странных частиц.

В основе запрета какого-либо процесса лежит некоторый закон сохранения. Чтобы объяснить запрет одиночного рождения странных частиц, М.Гелл-Манн и К.Нишиджима ввели новое квантовое число S, суммарное значение которого должно, по их предположению, сохраняться при сильных взаимодействиях. Его и назвали странностью.

Очарованный кварк - это кварк с квантовым числом С, которое у всех остальных равно нулю, равным единице. Частицы семейств ч и ш представляют собой различные уровни(состояния) системы сс~. Эта система названа чармонием, по аналогии с системой электрон - позитрон, названной позитронием. Поскольку очарование кварка и антикварка в чармонии в сумме даёт ноль, говорят, что эта система обладает скрытым очарованием. В 1976 году были предсказаны и открыты частицы с явным очарованием.

Красота - это разность между числами b-кварков и антикварков b~. Красота сохраняется при сильных и электромагнитных взаимодействиях и может нарушаться при слабых.

Цвет внутри нуклона от кварка к кварку переносят частички -глюоны. Они похожи на фотоны. У глюонов нет массы, они движутся со скоростью света. Однако в отличие от зарядово-нейтральных фотонов, глюоны просто «измазаны» зарядом. Фотон никакого нового электрического поля вокруг себя не создаёт. Глюон же своим собственным зарядом рождает новые глюоны и происходит лавинообразное саморазмножение.

Каждый кварк утоплен в толстом комке глюонной «резины». Очищенными от глюонов они становятся лишь в центре нуклона. Зондирование центральных областей нуклона дало неожиданные результаты - чистые кварки - лёгкие объекты, они в 100 раз легче нуклона. Оказывается, нуклоны состоят в основном из глюонов.

Опыты показали, что в центре элементарной частицы кварки почти не связаны взаимодействиями, и ведут себя как плавающие в воздухе надувные шарики. Если же кварки пытаются разойтись, то сразу возникают связывающие их силы. Сквозь стенки протона легко проникают пучки зондирующих электронов, их пронизывают фотоны и нейтрино. И в то же время оттуда не может вырваться ни один кварк. Понять, почему это происходит, можно на очень простой модели. Представим себе, что между кварками натянуто что-то вроде резиновых нитей. Когда кварки рядом друг с другом, нити провисают, и ничто не мешает им двигаться. Но как только они расходятся, нити натягиваются и утягивают кварки обратно. Если в один из кварков «выстрелить» быстрым электроном, то он получит большой импульс и отскочит. Но его движение будет продолжаться лишь до тех пор, пока натяжение «резиновой нити» не возрастёт настолько, что их энергии хватит на рождение новой пары кварков. «Нить» рвётся, в точке разрыва выделяется энергия и рождается пара кварк-антикварк. Антикварк и выбитый электроном кварк «слипнутся» в мезон, а оставшийся кварк займёт место выбитого кварка.

Теперь должно быть понятно, почему не удаётся выбить кварк из нуклона: сколько по нему ни бей, из него будут вылетать целые частицы - адроны, а не их осколки - кварки и антикварки.

Каждый лептон характеризуется лептонным зарядом, или лептонным числом. Следует различать мюонный, электронный и таонный заряды, обозначаемые соответственно через Lм, Le, Lф. Это различные величины, хотя им условно приписываются одинаковые числовые значения. Условились для всех отрицательно заряженных лептонов считать лептонные заряды равными +1. Лептонные заряды всех остальных частиц находятся из экспериментально установленного факта, согласно которому в замкнутой системе разность между числом лептонов и антилептонов остаётся постоянной. Для этого нужно придать этому факту форму закона сохранения лептонного заряда. При этом лептонные заряды всех остальных частиц принимаются равными нулю, так как у этих частиц свойства, связанные с существованием лептонного заряда, не обнаруживаются. Закон сохранения лептонного заряда требует, чтобы все положительно заряженные лептоны имели лептонный заряд, равный -1. Это видно из того, что возможны реакции:

e+ + e- --> 2г, м+ + м- --> 2 г, ф+ + ф---> 2г

Только тогда суммарный лептонный заряд правой части будет равен нулю, а это необходимо, так как фотон лептонного заряда не имеет. Из возможности процессов

р+ --> м+ + нм p --> n + e++ нe

следует, что лептонный заряд нe и нм равен +1, а соответствующих им античастиц - -1. Аналогично надо приписать нф лептонный заряд +1, а соответствующей ему античастице - -1.

В настоящее время существует гипотеза о родстве кварков и лептонов. Эту гипотезу выдвинули А.Салам и Дж.Пати. По их мнению, кварки и лептоны очень похожи. Лептон является белым состоянием кварка. Электрические заряды лептонов 0 и 1, то есть 0/3 и 3/3, прекрасно укладываются в один ряд с зарядами кварков. Что же касается масс, то по их гипотезе, это результат влияния окружающего фона. Ведь вокруг всякой частицы образуется облако испущенных ею частиц, которые экранируют частицу и изменяют её свойства. Только такие заэкранированные, закутанные в облака частицы с изменёнными, или, как говорят физики, эффективными свойствами и наблюдаются на опытах. Внутри облака частица чувствует себя, как в ванне. А поскольку плотность и состав облака зависят от величины заряда и других характеристик частицы, вес членов кваркового мультиплета оказывается различным.

Новая теория сократила список независимых элементарных частиц, сделала таблицу более стройной. Однако одного этого ещё недостаточно, чтобы физики поверили в гипотезу о тесной связи кварков с лептонами. Новая теория всего лишь заменила один непонятный факт - упрямство лептонов, другим - их родством с кварками. Это всё равно, что старую тайну объяснять с помощью новой загадки. Уильям Оккам, член Ордена нищенствующих монахов, выступавший с лекциями по богословию и логике, говорил:«Не следует с помощью большего делать то, чего можно достигнуть меньшей ценой» или более кратко:«Сущностей не следует умножать сверх необходимого». С тех пор этот принцип называют «бритвой Оккама». Она срезает все слабо обоснованные гипотезы, вылущивая зёрна истины. Это первый краеугольный камень научного исследования. Второй краеугольный камень - обязательная проверка экспериментом. Как ни стройна была бы теория, если она не проверена на опыте, то относится к разряду недоказанных гипотез. Аристотель, например, считал, что у женщин меньше зубов, чем у мужчин. Ему и в голову не приходило проверить это, хотя у него было две жены. Этот пример выглядит историческим анекдотом, но он полно передаёт пренебрежение науки того времени к эксперименту. Если же теория такова, что выводы её можно проверить лишь в далёком будущем, учёные подходят к ней с большой осторожностью.

В теориях, основанных на родстве кварков и лептонов, глюоны, перенося цвет, могут сделать кварк лептоном, и такая частица - например, протон - сразу же распадётся на составные части, поскольку частиц, состоящих из смеси кварков и лептонов в природе не существует. Подобной радиоактивности ни в одной другой теории нет, поэтому распад протона будет убедительным доказательством того, что кварки и лептоны - близкие родственники. Расчёт говорит, что протон распадается крайне редко. В теле человека от рождения до смерти распадается в среднем 1 протон. Пройдёт немало лет, прежде чем потери атомов в мире станут заметными.

Как же обнаружить такое сверхредкое событие? Прежде всего, заметим, что протон имеет положительный заряд. Значит, при распаде через какое-то время образуется позитрон. Двигаясь в веществе, он встретится с электроном, и они аннигилируют в кванты света. Эти искорки света - сигналы о «протонных катастрофах» в веществе. Засечь их очень трудно, и поэтому физикам приходится наблюдать за большим объёмом вещества сразу. Пока ни одного распада протона зарегистрировать не удалось, но физики со всего мира ждут вестей с «протонного фронта». Если же ни один протон так и не распадётся, это послужит сигналом тому, что физики в чём-то крупно ошибаются, и тогда придётся искать новую дорогу в недра микромира.

глава 3. способы, регистрация и исследования элементарных частиц

3.1 Радиоактивность, цепные реакции

Радиоактивностью называют самопроизвольное превращение неустойчивых изотопов одного химического элемента в изотоп другого элемента, сопровождающееся испусканием элементарных частиц или ядер. К числу основных таких превращений относятся: 1) альфа-распад, 2). бета-распад (в том числе К-захват), 3) протонная радиоактивность и 4) спонтанное деление тяжелых ядер.

Радиоактивность, наблюдающаяся у изотопов, существующих в природных условиях, -называется естественной. Радиоактивность изотопов, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам.

Естественная радиоактивность была открыта в 1896 г. Беккерелем. Было обнаружено, что радиоактивное вещество является источником трёх видов излучения. Одно из них под действием магнитного поля отклоняется в ту же сторону, в которую отклонялся бы поток положительно заряженных частиц; оно получило название б-лучей. Второе, названное в-лучами, отклоняется магнитным полем в противоположную сторону, т. е. так, как отклонялся бы поток отрицательно заряженных частиц. Третье излучение, никак не реагирующее на действие магнитного поля, было названо г-лучами. Впоследствии выяснилось, что г-лучи представляют собой электромагнитное излучение весьма малой длины волны.

Искусственно-радиоактивные вещества могут получаться при весьма разнообразных ядерных реакциях. Примером может служить реакция захвата нейтронов серебром. Для проведения такой реакции достаточно поместить пластинку серебра поблизости от источника нейтронов, окружённого парафином. В парафине нейтроны замедляются, а медленные нейтроны легко захватываются ядрами и вызывают ядерную реакцию. Пластинка серебра при этом не претерпевает под действием нейтронов каких-либо видимых изменений. Но если поднести её к газоразрядному счётчику, то он покажет, что пластинка стала радиоактивной, т. е. испускает в-лучи. При этом обнаруживается, что приобретённая радиоактивность постепенно ослабевает.

Искусственная радиоактивность - весьма распространённое явление: в настоящее время получено по нескольку искусственно-радиоактивных изотопов для каждого из элементов периодической системы.

Простейшие ядерные реакции.

Ядерной реакцией называется процесс интенсивного взаимодействия атомного ядра с элементарной частицей или с другим ядром, приводящий к преобразованию ядра. Взаимодействие возникает при сближении частиц благодаря действию ядерных сил.

Наиболее распространённым видом ядерной реакции является взаимодействие лёгкой частицы a с ядром Х, в результате которого образуется лёгкая частица b и ядро Y:

Х + а = Y + b

В качестве частиц а и b могут фигурировать нейтрон, протон, ядро тяжёлого водорода (дейтон), б-частица и фотон. Ядерные реакции могут сопровождаться как выделением, так и поглощением энергии. Количество выделяющейся энергии называется тепловым эффектом реакции. Он определяется разностью масс покоя (выраженных в энергетических единицах) исходных и конечных ядер. Если сумма масс образующихся ядер превосходит сумму масс исходных ядер, реакция идет с поглощением энергии и тепловой эффект ее будет отрицательным.

Как установил Н. Бор в 1936 г., реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. Первый этап заключается в захвате приблизившейся к ядру X на достаточно малое расстояние (такое, чтобы могли вступить в действие ядерные силы) посторонней частицы а и в образовании промежуточного ядра П, называемого составным ядром или компаунд-ядром. Энергия, привнесенная частицей а (она слагается из кинетической энергии частицы и энергии ее связи с ядром), за очень короткое время перераспределяется между всеми нуклонами составного ядра, в результате чего это ядро оказывается в возбужденном состоянии.

На втором этапе составное ядро испускает частицу b. Символически такое двустадийное протекание реакции можно представить следующим образом:

Х + а = П = Y + b

Может случиться, что испущенная частица тождественна с захваченной (b = а). Тогда процесс называют рассеянием, причем в случае, если энергия частицы b равна энергии частицы а (Еь = Еа), рассеяние будет упругим, в противном случае -- неупругим. Ядерная реакция имеет место, если частица b не тождественна с а.

Реакции, вызываемые быстрыми нуклонами и дейтонами, протекают без образования промежуточного ядра. Такие реакции носят название прямых ядерных взаимодействий. Типичной реакцией прямого взаимодействия является реакция срыва, наблюдающаяся при нецентральных соударениях дейтона с ядром. При таких соударениях один из нуклонов дейтона может попасть в зону действия ядерных сил и будет захвачен ядром, в то время как другой нуклон останется вне зоны действия ядерных сил и пролетит мимо ядра.

Первая ядерная реакция была осуществлена Резерфордом в 1919 г. При облучении азота б-частицами, испускаемыми радиоактивным источником, некоторые ядра азота превращались в ядра кислорода, испуская при этом протон.

Резерфорд воспользовался для расщепления атомного ядра природными снарядами -- б-частицами. Ядерная реакция, вызванная искусственно ускоренными частицами, была впервые осуществлена Кокрофтом и Уолтоном в 1932 г. С помощью так называемого умножителя напряжения они ускоряли протоны до энергии порядка 0,8 Мэв и наблюдали реакцию: 3Li7(p,б)2 Не4

В дальнейшем по мере развития техники ускорения заряженных частиц множилось число ядерных превращений, осуществляемых искусственным путем.

Наибольшее значение имеют реакции, вызываемые нейтронами. В отличие от заряженных частиц (р,d,б) нейтроны не испытывают кулоновского отталкивания, вследствие чего они могут проникать в ядра, обладая весьма малой энергией. Эффективные сечения реакций обычно возрастают при уменьшении энергии нейтронов. Это можно объяснить тем, что чем меньше скорость нейтрона, тем больше время, которое он проводит в сфере действия ядерных сил, пролетая вблизи ядра, и, следовательно, тем больше вероятность его захвата. Однако часто наблюдаются случаи, когда сечение захвата нейтронов имеет резко выраженный максимум для нейтронов определенной энергии Еr.

Деление ядер.

В 1938 г. немецкие учёные О. Ганн и Ф. Штрассман обнаружили, что при облучении урана нейтронами образуются элементы из середины периодической системы - барий и лантан. Объяснение этого явления было дано немецкими учёными О. Фришем и Л. Мейтнер. Они предположили, что захватившее нейтрон ядро урана делится на две примерно равные части, получившие название осколков деления.

Дальнейшие исследования показали, что деление может происходить разными путями. Всего образуется 80 различных осколков, причём наиболее вероятным является деление на осколки, массы которых относятся как 2:3.

Энергия связи, приходящаяся на один нуклон, для ядер средней массы значительно больше, чем у тяжёлых ядер. Отсюда следует, что деление ядер должно сопровождаться выделением большого количества энергии. Но особенно важным является то, что при делении каждого ядра высвобождается несколько нейтронов. Относительное количество нейтронов в тяжёлых ядрах заметно больше, чем в средних ядрах. Поэтому образовавшиеся осколки оказываются сильно перегруженными нейтронами, в результате чего выделяют по нескольку нейтронов. Большинство нейтронов испускается мгновенно. Часть (около 0,75 %) нейтронов, получившая название запаздывающих нейтронов, испускается не мгновенно, а с запаздыванием до 1 мин. В среднем на каждый акт деления приходится 2,5 выделившихся нейтронов.

Выделение мгновенных и запаздывающих нейтронов не устраняет полностью перегрузку осколков деления нейтронами. Поэтому осколки оказываются в большинстве случаев радиоактивными и претерпевают цепочку в--превращений, сопровождаемых испусканием г-лучей.

Предложенная модель является идеальной. Процесс размножения нейтронов протекал бы таким образом при условии, что все выделившиеся нейтроны поглощаются делящимися ядрами. В реальных условиях это далеко не так. Прежде всего из-за конечных размеров делящегося тела и большой проникающей способности нейтронов многие из них покинут зону реакции прежде, чем будут захвачены каким-либо ядром и вызовут его деление. Кроме того, часть нейтронов поглотится ядрами неделящихся примесей, вследствие чего выйдет из игры, не вызвав деления и, следовательно, не породив новых нейтронов.

Поверхность тела растёт как квадрат, а объём - как куб линейных размеров. Поэтому относительная доля вылетающих наружу нейтронов уменьшается с ростом массы делящегося вещества.

Цепные реакции.

Природный уран содержит 99,27% изотопа U238, 0,72% U235 и около 0,01% U234. Таким образом, на каждое делящееся под действием медленных нейтронов ядро U235 приходится 140 ядер U238, которые захватывают не слишком быстрые нейтроны без деления. Поэтому в природном уране цепная реакция деления не возникает.

Цепная ядерная реакция в уране может быть осуществлена двумя способами. Первый способ заключается в выделении из природного урана делящегося изотопа U235. Вследствие химической неразличимости изотопов разделение их представляет собой весьма трудную задачу. Однако она была решена несколькими методами. Промышленное значение приобрел диффузионный (точнее, эффузионный) метод разделения, при котором летучее соединение урана UF6 (гексафторид урана) многократно пропускается через перегородку с очень малыми порами. В куске чистого U235 каждый захваченный ядром нейтрон вызывает деление с испусканием ~2,5 новых нейтронов. Однако, если масса такого куска меньше определенного критического значения (составляющего для U235 по вычислениям немецкого физика В. Гейзенберга примерно 9 кг), то большинство испущенных нейтронов вылетит наружу, не вызвав деления, так что цепная реакция не возникает. При массе, большей критической, нейтроны быстро размножаются и реакция приобретает взрывной характер. На этом основано действие атомной бомбы. Ядерный заряд такой бомбы представляет собой два или более кусков почти чистого U235 или Pu239. Масса каждого куска меньше критической, вследствие чего цепная реакция не возникает. В земной атмосфере всегда имеется некоторое количество нейтронов, рожденных космическими лучами. Поэтому, чтобы вызвать взрыв, достаточно соединить части ядерного заряда в один кусок с массой, большей критической. Это нужно делать очень быстро и соединение кусков должно быть очень плотным. В противном случае ядерный заряд разлетится на части прежде, чем успеет прореагировать заметная доля делящегося вещества. Для соединения используется обычное взрывчатое вещество (запал), с помощью которого одной частью ядерного заряда выстреливают в другую. Все устройство заключено в массивную оболочку из металла большой плотности. Оболочка служит отражателем нейтронов и, кроме того, удерживает ядерный заряд от распыления до тех пор, пока максимально возможное число его ядер не выделит свою энергию при делении. Цепная реакция в атомной бомбе идет на быстрых нейтронах. При взрыве успевает прореагировать только часть ядерного заряда.

Иной способ осуществления цепной реакции используется в ядерных реакторах (называемых также атомными котлами). В качестве делящегося вещества в реакторах служит природный (либо несколько обогащенный изотопом U235) уран. Чтобы предотвратить радиационный захват нейтронов ядрами U238 (который становится особенно интенсивным при энергии нейтронов -- 7 эВ), сравнительно небольшие блоки (куски) делящегося вещества размещают на некотором расстоянии друг от друга, а промежутки между блоками заполняют замедлителем, т. е. веществом, в котором нейтроны замедляются до тепловых скоростей. Сечение захвата тепловых нейтронов ядром U238 составляет всего 3 барна, в то время как сечение деления U235 тепловыми нейтронами почти в 200 раз больше (580 барн). Поэтому, хотя нейтроны сталкиваются с ядрами U238 в 140 раз чаще, чем с ядрами U235, радиационный захват происходит реже, чем деление, и при больших критического размерах всего устройства коэффициент размножения нейтронов может достигнуть значений, больших единицы.

Замедление нейтронов осуществляется за счёт упругого рассеяния. В этом случае энергия, теряемая замедляемой частицей, зависит от соотношения масс сталкивающихся частиц. Максимальное количество энергии теряется, если частицы имеют одинаковую массу. С этой точки зрения идеальным замедлителем должно бы быть вещество, содержащее обычный водород, например, вода (массы протона и нейтрона примерно одинаковы). Однако такие вещества оказались непригодными в качестве замедлителя, потому что обычный водород поглощает нейтроны.

Ядра замедлителя должны обладать малым сечением захвата нейтронов и большим сечением упругого рассеяния. Этому условию удовлетворяют дейтерий, а также ядра графита и бериллия.

3.2 Методы наблюдения элементарных частиц

Элементарные частицы удаётся наблюдать благодаря тем следам, которые они оставляют при своём прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, её энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своём пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, нейтральные частицы также обнаруживаются по ионизации, вызванной порождёнными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся устройства, которые регистрируют факт пролёта частицы и позволяют судить об её энергии. Вторую группу образуют трековые приборы, т. е. приборы, позволяющие наблюдать следы частиц в веществе. К числу регистрирующих приборов относятся ионизационные камеры и газоразрядные счётчики. Широкое распространение получили черенковские счётчики и сцинтилляционные счётчики.

Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную световую вспышку (сцинтилляцию), называют фосфорами. Фосфоры бывают органические и неорганические.

Сцинтилляционный счетчик состоит из фосфора, от которого свет подается по специальному светопроводу к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов (которая пропорциональна интенсивности световых вспышек), что дает дополнительную информацию о регистрируемых частицах.

Счетчики часто объединяются в группы и включаются так, чтобы регистрировались только такие события, которые отмечаются одновременно несколькими приборами, либо только одним ним из них. В первом случае говорят, что счетчики включены по схеме совпадений, во втором -- по схеме антисовпадений.

К числу трековых приборов относится камеры Вильсона, пузырьковые камеры, искровые камеры и эмульсионные камеры.

Камера Вильсона.

Так называют прибор, созданный английским физиком Ч. Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Прибор работает не непрерывно, а циклами. Сравнительно короткое время чувствительности камеры чередуется с мертвым временем (в 100--1000 раз большим), в течение которого камера готовится к следующему рабочему циклу.

Пересыщение достигается за счет внезапного охлаждения, вызываемого резким (адиабатическим) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелия, азота, аргона) и паров воды, этилового спирта и т. п. В этот же момент производится стереоскопическое (т. е. с нескольких точек) фотографирование рабочего объема камеры.

Стереофотографии позволяют воссоздать пространственную картину зафиксированного явления. Так как отношение времени чувствительности к мертвому времени очень мало, приходится иногда делать десятки тысяч снимков, прежде чем будет зафиксировано какое-либо событие, обладающее небольшой вероятностью. Чтобы увеличить вероятность наблюдения редких явлений, используются управляемые камеры Вильсона, у которых работой расширительного механизма управляют счетчики частиц, включенные в электронную схему, выделяющую нужное событие.

Пузырьковая камера.

В изобретенной Д. А. Глезером в 1952 г. пузырьковой камере пересыщенные пары заменены прозрачной перегретой жидкостью (т. е. жидкостью, находящейся под внешним давлением, меньшим давления ее насыщенных паров). Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара -- образуется трек.

Пузырьковая камера, как и камера Вильсона, работает циклами. Запускается камера резким снижением (сбросом) давления, вследствие чего рабочая жидкость переходит в метастабильное перегретое состояние. В качестве рабочей жидкости, которая одновременно служит мишенью для пролетающих через нее частиц, применяются жидкий водород (в этом случае нужны низкие температуры).

Искровые камеры.

В 1957 г. Краншау и де-Биром был сконструирован прибор для регистрации траекторий заряженных частиц, названный искровой камерой. Прибор состоит из системы плоских параллельных друг другу электродов, выполненных в виде каркасов с натянутой на них металлической фольгой либо в виде металлических пластин. Электроды соединяются через один. Одна группа электродов заземляется, а на другую периодически подается кратковременный (длительностью 10-7 сек) высоковольтный импульс (10-- 15 кВ). Если в момент подачи импульса через камеру пролетит ионизирующая частица, её путь будет отмечен цепочкой искр, проскакивающих между электродами.

Прибор запускается автоматически с помощью включенных по схеме совпадений дополнительных счетчиков, регистрирующих прохождение через рабочий объем камеры исследуемых частиц. В камерах, наполненных инертными газами, межэлектродное расстояние может достигать нескольких сантиметров. Если направление полета частицы образует с нормалью к электродам угол, не превышающий 40°, разряд в таких камерах развивается по направлению трека частицы.

Метод фотоэмульсий.

Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации элементарных частиц фотопластинки. Заряженная частица, проходя через фотоэмульсию, вызывает такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы.

Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц летящих параллельно плоскости слоя. В эмульсионных камерах облучению подвергаются толстые пачки (весом до нескольких десятков килограммов), составленные из отдельных слоев фотоэмульсии (без подложки). После облучения пачка разбирается на слои, каждый из которых проявляется и просматривается под микроскопом. Для того чтобы можно было проследить путь частицы при переходе из одного слоя в другой, перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка.

3.3 Великое объединение

Одной из основных целей современной теоретической физики является единое описание окружающего нас мира. Например, специальная теория относительности объединила электричество и магнетизм в единую электромагнитную силу. Квантовая теория, предложенная в работах Глеэшоу, Вайнберга и Салама, показала, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое. Так что есть основания полагать, что все фундаментальные взаимодействия в конечном итоге объединятся. Если мы начнём сравнивать сильное и электрослабое взаимодействия, то нам придётся уходить в области всё больших энергий, пока они не сравняются по силе и не сольются в одно в районе энергий в 1016 ГэВ. Гравитация же присоединится к ним согласно Стандартной Модели в районе энергий в 1019 ГэВ. К сожалению, такие энергии сталкивающихся на ускорителях частиц не только недоступны, но и но и вряд ли будут доступны в будущем. Однако теоретические исследования по поиску единой теории всех фундаментальных взаимодействий идут полным ходом.

Объединение двух фундаментальных теорий современной физики - квантовой теории и общей теории относительности - в рамках единого теоретического подхода до недавнего времени было одной из важнейших проблем. Примечательно, что эти две теории взятые вместе, воплощают почти всю сумму человеческих знаний о наиболее фундаментальных взаимодействиях в природе. Поразительный успех этих двух теорий состоит в том, что вместе они могут объяснить поведение материи практически в любых условиях - от внутриядерной до космической области. Большой загадкой, однако, была несовместимость этих двух теорий. И было непонятно почему природа на своём глубоком фундаментальном уровне должна требовать двух разных подходов с двумя наборами математических методов, двух наборов постулатов и физических законов? В идеале хотелось бы иметь Единую теорию поля, объединяющую эти две фундаментальные теории. Однако попытки их соединения постоянно разбивались из-за появления бесконечностей (расходимостей) или нарушения некоторых важнейших физических принципов. Объединить эти теории удалось лишь в рамках теории струн и суперструн.

История создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Дж.Венециано и М.Судзуки. Перелистывая старые труды по математике, они случайно натолкнулись на бета-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970 - 1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдалённо напоминающий тонкую, натянутую струну. Потом были сформулированы и построены методы квантования таких струн. Однако оказалось, что квантовую теорию струн корректно (без отрицательных и больших единицы квантовых вероятностей) можно построить лишь в 10 и 26 измерениях, и модель сразу перестала быть привлекательной. 10 лет эта идея влачила жалкое существование, потому что никто не мог поверить, что 10- или 26-мерная теория имеет какое-либо отношение к физике в 4-мерном пространстве. Когда в 1974 году Шерк и Шварц предположили, что эта модель является на самом деле теорией всех известных фундаментальных взаимодействий, никто не принял это всерьёз. Спустя 10 лет, в 1984 году, появилась знаменитая работа М.Грина и Д.Шварца. В этой работе было показано, что возникающие при квантовомеханических расчётах бесконечности в точности сокращаться благодаря симметриям, присущем суперструнам. Струны бесконечно тонки, но длина их конечна и составляет около 10-33 см. Это ничтожно мало даже по сравнению с размером нейтрино, так что для многих задач можно считать объекты точечными. Но для квантовой теории струнная природа элементарных частиц очень важна.

Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа гладкая. Из этого следует одно важное свойство струнной теории - в ней нет ряда бесконечностей, присущих квантовой теории поля с точечными частицами.

Струны имеют определённую устойчивую форму колебаний - моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение - все частицы могут быть описаны через один объект - струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех тонов - зажимая по-разному скрипичные струны, можно извлекать самые разные звуки.

Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии - обычных брюк, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части брюк. Соединим два простейших струнных взаимодействия между собой (склеим двое брюк в районе пояса) и получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие.

В струнной теории, в частности, существует замкнутая струна, соответствующая гравитону. Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.

Суперструны существуют в 10-мерном пространстве-времени, в то время, как мы живём в 4-мерном. И если суперструны описывают нашу Вселенную, нам необходимо связать эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до 10-33 см. Из-за малости этого расстояния оно становится абсолютно незаметным для всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу.

У струн есть ещё одно замечательное свойство - они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Лёгкость оборотных мод позволяет интерпретировать их как наблюдаемые нами элементарные частицы.

Величайший парадокс теории суперструн заключается в том, что она сама по себе не едина. Можно выделить 5 различных согласованных суперструнных теорий, известных как: тип I, тип IIА, тип IIВ, SO(32) и Е8 х Е8.

В начале последнего десятилетия ХХ века одним из принципиальных вопросов теоретической физики был вопрос выбора той или иной струнной теории качестве кандидата на роль Единой теории. В решении этого фундаментального вопроса в последние годы был достигнут значительный прогресс. Оказалось, что все известные теории суперструн связаны между собой преобразованиями дуальности, открытыми в 1995 году. Дуальность теорий - это их существенное различие в деталях, но опись одной и той же физической реальности. На основе анализа взаимосвязи разных теорий выдвинута гипотеза, согласно которой все известные теории суперструн являются предельными случаями некоей фундаментальной М-теории. Эта теория живёт в 11-мерном пространстве-времени и на больших расстояниях описывает 11-мерную супергравитацию.

С открытием дуальности связана третья струнная революция. Первая струнная революция была вызвана изучением амплитуд рассеяния. Вторая струнная революция связана с открытием Грином и Шварцем суперсимметрии. Суперсимметрия - это симметрия между бозонами и фермионами.

заключение

Действительно, элементарные частицы невозможно ни потрогать, ни понюхать, ни увидеть, ни попробовать на вкус. Информацию об их существовании ученые получают посредством громоздких детекторов, которые выдают для обработки наборы электрических или световых сигналов. Только специальным образом анализируя полученные сигналы, физики могут изучать свойства элементарных частиц. На первый взгляд, нет абсолютно никакой гарантии, что в длинной цепочке передачи сигнала из микромира к макроскопическому наблюдателю физики - экспериметаторы правильно учитывают помехи, ошибки или искажения первичной информации. Следовательно, элементарные частицы могут оказаться лишь мороком, неправильной интерпретацией искаженных сигналов. Иное дело - макроскопические объекты. Человек может узнать характеристики макроскопических объектов без всяких посредников, только при помощи органов чувств. Поэтому в реальности макроскопического окружающего мира, как правило, не сомневается. Но так кажется только на первый весьма поверхностный взгляд.

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела. Здесь и сила ветра или набегающего потока воды, давление воздуха, мощный выброс взрывающихся химических веществ, мускульная сила человека, вес тяжелых объектов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения, и вулканические извержения, приводившие к гибели цивилизации, и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития теоретического естествознания, несмотря на столь большое разнообразие, именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех преобразований тел и процессов.

Список используемой литературы

1. Бопп, Ф. Введение в физику ядра, адронов и элементарных частиц: учебник / Пер. с нем. - М.: «Мир», 1999.- 277 с.

2. Фейнман, Р. Элементарные частицы и законы физики /Пер. с англ. - М.: «Мир», 2000. -137 с.

3. Любимов, А. Введение в экспериментальную физику частиц / под ред. А. Любимов, Д. Киш. 2-е изд., перераб. и доп. - М.: Физматлит, 2001. -267 с.

4. Ляховский, В.Д. Группы симметрии и элементарные частицы: учеб. пособие / В.Д. Ляховский, А.А. Болохов. 2-е изд., испр. - М.: УРСС, 2002. - 371с.

5. Верин, О.Г. Динамика вакуума и солитонная теория элементарных частиц / О.Г. Верин. - М.: Пресс, 2002. - 99 с.

6. Рузавин, Г.И. Концепции современного естествознания: учеб. пособие для вузов / Г.И. Рузавин. - М.: Гардарики, 2005. - 303 с.

7. Рау, В.Г. Основы теоретической физики. Физика ядерного ядра и элементарных частиц: учеб. пособие для вузов / В.Г. Рау. - М.: Высш. шк., 2005. - 141 с.

8. Верин, О.Г. Природа элементарных частиц, квантовая теория и великое объединение / О.Г. Верин. - М.: Контур, 2006. - 131 с.

9. Бояркин, О.М. Введение в физику элементарных частиц: учеб. пособие / О.М. Бояркин. 2-е изд., испр. - М.: URSS, 2006. - 259 с.

10. Дирак, П.А.М. Собрание научных трудов. Т.2.: Квантовая теория (научные статьи 1924 - 1947) / П.А.М. Дирак.: [под общ. ред. А.Д. Суханова]. - М.: Физматлит, 2003. - 846 с.

рефераты
РЕФЕРАТЫ © 2010